This reduces the number of SGPRs due to some concerns about running
out of SGPRs if you make all the SGPRs that aren't reserved available
for the calling convention.
Change-Id: Idb4ca4dc72f5b6808cb524ff7270915a8de5b4c1
llvm-svn: 370215
Summary:
Until we have proper call-site information we should not recompute
liveness and return information for each call site. This patch directly
uses the function versions and introduces TODOs at the usage sites.
The required iterations to get to the fixpoint are most of the time
reduced by this change and we always avoid work duplication.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66562
llvm-svn: 370208
This relands this commit, I mistakenly reverted the original change
thinking it was the cause of the observed MSan failures but it was not.
llvm-svn: 370206
Neither libgcc or compiler-rt are usually used on Windows, so these
functions can't be called.
Differential revision: https://reviews.llvm.org/D66880
llvm-svn: 370204
There is no pattern matched `add hi, (MipsLo texternalsym)`. As a result,
loading an address of 32-bit symbol requires two registers and one more
additional instruction:
```
addiu $1, $zero, %lo(foo)
lui $2, %hi(foo)
addu $25, $2, $1
```
This patch adds the missed pattern and enables generation more effective
set of instructions:
```
lui $1, %hi(foo)
addiu $25, $1, %lo(foo)
```
Differential Revision: https://reviews.llvm.org/D66771
llvm-svn: 370196
Summary: There are at least 2 ways to express the same shuffle. Various pieces of code explicit check for both option, but other places do not when they would benefit from doing it. This patches refactor the codebase to use buildLegalVectorShuffle in order to make that behavior more consistent.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66804
llvm-svn: 370190
This just pulls the MVEVPTBlockPass into a separate file, as opposed to being
wrapped up in Thumb2ITBlockPass.
Differential revision: https://reviews.llvm.org/D66579
llvm-svn: 370187
This adds fp16 VMOVX patterns, using the same patterns as rL362482 with some
adjustments for MVE. It allows us to move fp16 registers without going into and
out of gprs.
VMOVX is able to move the top bits from a fp16 in a fp reg into the bottom bits
of another register, zeroing the rest. This can be used for odd MVE register
lanes. The top bits are not read by fp16 instructions, so no move is required
there if we are dealing with even lanes.
Differential revision: https://reviews.llvm.org/D66793
llvm-svn: 370184
With the introduction of the typed byval attribute change there was no
way that the LLVM-C API could create the correct class Attribute. If a
program that uses the C API creates a ByVal attribute and annotates a
function with that attribute LLVM will crash when it assembles or write
that module containing the function out as bitcode.
This change is a minimal fix to at least allow code to work, this is
because the byval change is on the 9.0 and I don't want to introduce new
LLVM-C API this late in the release cycle.
By Jakob Bornecrantz!
Differential revision: https://reviews.llvm.org/D66144
llvm-svn: 370176
Allow vectorizing loops that have reductions when tail is folded by masking.
A select is introduced in VPlan, choosing between the last value carried by the
loop-exit/live-out instruction of the reduction, and the penultimate value
carried by the reduction phi, according to the "i < n" mask of fold-tail.
This select replaces the last value as the live-out value of the loop.
Differential Revision: https://reviews.llvm.org/D66720
llvm-svn: 370173
rL369567 reverted a couple of recent changes made to ARMParallelDSP
because of a miscompilation error: PR43073.
The issue stemmed from an underlying bug that was caused by adding
muls into a reduction before it was proved that they could be executed
in parallel with another mul.
Most of the changes here are from the previously reverted commits.
The additional changes have been made area:
1) The Search function now doesn't insert any muls into the Reduction
object. That now happens once the search has successfully finished.
2) For any muls added into the reduction but that weren't paired, we
accumulate their values as an input into the smlad.
Differential Revision: https://reviews.llvm.org/D66660
llvm-svn: 370171
This change moves the actual stack pointer manipulation into the legalizer,
available to targets via lower(). The codegen is slightly different because
we're using explicit masks instead of G_PTRMASK, and using G_SUB rather than
adding a negative amount via G_GEP.
Differential Revision: https://reviews.llvm.org/D66678
llvm-svn: 370104
The code we had isSafeToLoadUnconditionally was blatantly wrong. This function takes a "Size" argument which is supposed to describe the span loaded from. Instead, the code use the size of the pointer passed (which may be unrelated!) and only checks that span. For any Size > LoadSize, this can and does lead to miscompiles.
Worse, the generic code just a few lines above correctly handles the cases which *are* valid. So, let's delete said code.
Removing this code revealed two issues:
1) As noted by jdoerfert the removed code incorrectly handled external globals. The test update in SROA is to stop testing incorrect behavior.
2) SROA was confusing bytes and bits, but this wasn't obvious as the Size parameter was being essentially ignored anyway. Fixed.
Differential Revision: https://reviews.llvm.org/D66778
llvm-svn: 370102
Copied directly from the IR version.
Most of the testcases I've added for this are somewhat problematic
because they really end up testing the yet to be implemented version
for MUL_I24/MUL_U24.
llvm-svn: 370099
Summary:
This patch implements main entry and auxiliary entries of symbol table generation for llvm-readobj on AIX.
The source code of aix_xcoff_xlc_test8.o (compile with xlc) is:
-bash-4.2$ cat test8.c
extern int i;
extern int TestforXcoff;
extern int fun(int i);
static int static_i;
char* p="abcd";
int fun1(int j) {
static_i++;
j++;
j=j+*p;
return j;
}
int main() {
i++;
fun(i);
return fun1(i);
}
Patch provided by DiggerLin
Differential Revision: https://reviews.llvm.org/D65240
llvm-svn: 370097
This reverts r369486 (git commit 8d18384809957cc923752e10a86adab129e3df48)
The opt-viewer tests don't pass after this change, and fixing them isn't
trivial. opt-viewer.py imports optmap, which requires adjusting
pythonpath, which is more work than I'm willing to do to fix forward.
llvm-svn: 370095
Summary:
This patch introduces, SequenceBBQuery - new heuristic to find likely next callable functions it tries to find the blocks with calls in order of execution sequence of Blocks.
It still uses BlockFrequencyAnalysis to find high frequency blocks. For a handful of hottest blocks (plan to customize), the algorithm traverse and discovered the caller blocks along the way to Entry Basic Block and Exit Basic Block. It uses Block Hint, to stop traversing the already visited blocks in both direction. It implicitly assumes that once the block is visited during discovering entry or exit nodes, revisiting them again does not add much. It also branch probability info (cached result) to traverse only hot edges (planned to customize) from hot blocks. Without BPI, the algorithm mostly return's all the blocks in the CFG with calls.
It also changes the heuristic queries, so they don't maintain states. Hence it is safe to call from multiple threads.
It also implements, new instrumentation to avoid jumping into JIT on every call to the function with the help _orc_speculate.decision.block and _orc_speculate.block.
"Speculator Registration Mechanism is also changed" - kudos to @lhames
Open to review, mostly looking to change implementation of SequeceBBQuery heuristics with good data structure choices.
Reviewers: lhames, dblaikie
Reviewed By: lhames
Subscribers: mgorny, hiraditya, mgrang, llvm-commits, lhames
Tags: #speculative_compilation_in_orc, #llvm
Differential Revision: https://reviews.llvm.org/D66399
llvm-svn: 370092
Before this patch, users were not allowed to optionally mark processor resource
groups as load/store queues. That is because tablegen class MemoryQueue was
originally declared as expecting a ProcResource template argument (instead of a
more generic ProcResourceKind).
That was an oversight, since the original intention from D54957 was to let user
mark any processor resource as either load/store queue. This patch adds the
ability to use processor resource groups in MemoryQueue definitions. This is not
a user visible change.
Differential Revision: https://reviews.llvm.org/D66810
llvm-svn: 370091
I thought `llvm::sort` was stable for some reason but it's not.
Use `llvm::stable_sort` in `CodeGenTarget::getSuperRegForSubReg`.
Original patch: https://reviews.llvm.org/D66498
llvm-svn: 370084