Reapply with DTU update moved after CFG update, which is a
requirement of the API.
-----
Non-feasible control-flow edges are currently removed by replacing
the branch condition with a constant and then calling
ConstantFoldTerminator. This happens in a rather roundabout manner,
by inspecting the users (effectively: predecessors) of unreachable
blocks, and further complicated by the need to explicitly materialize
the condition for "forced" edges. I would like to extend SCCP to
discard switch conditions that are non-feasible based on range
information, but this is incompatible with the current approach
(as there is no single constant we could use.)
Instead, this patch explicitly removes non-feasible edges. It
currently only needs to handle the case where there is a single
feasible edge. The llvm_unreachable() branch will need to be
implemented for the aforementioned switch improvement.
Differential Revision: https://reviews.llvm.org/D84264
It breaks stage-2 build. Clang crashed when compiling
llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
llvm/Support/GenericDomTree.h eraseNode: Node is not a leaf node
Non-feasible control-flow edges are currently removed by replacing
the branch condition with a constant and then calling
ConstantFoldTerminator. This happens in a rather roundabout manner,
by inspecting the users (effectively: predecessors) of unreachable
blocks, and further complicated by the need to explicitly materialize
the condition for "forced" edges. I would like to extend SCCP to
discard switch conditions that are non-feasible based on range
information, but this is incompatible with the current approach
(as there is no single constant we could use.)
Instead, this patch explicitly removes non-feasible edges. It
currently only needs to handle the case where there is a single
feasible edge. The llvm_unreachable() branch will need to be
implemented for the aforementioned switch improvement.
Differential Revision: https://reviews.llvm.org/D84264
Currently SCCP does not combine the information of conditions joined by
AND in the true branch or OR in the false branch.
For branches on AND, 2 copies will be inserted for the true branch, with
one being the operand of the other as in the code below. We can combine
the information using intersection. Note that for the OR case, the
copies are inserted in the false branch, where using intersection is
safe as well.
define void @foo(i32 %a) {
entry:
%lt = icmp ult i32 %a, 100
%gt = icmp ugt i32 %a, 20
%and = and i1 %lt, %gt
; Has predicate info
; branch predicate info { TrueEdge: 1 Comparison: %lt = icmp ult i32 %a, 100 Edge: [label %entry,label %true] }
%a.0 = call i32 @llvm.ssa.copy.140247425954880(i32 %a)
; Has predicate info
; branch predicate info { TrueEdge: 1 Comparison: %gt = icmp ugt i32 %a, 20 Edge: [label %entry,label %false] }
%a.1 = call i32 @llvm.ssa.copy.140247425954880(i32 %a.0)
br i1 %and, label %true, label %false
true: ; preds = %entry
call void @use(i32 %a.1)
%true.1 = icmp ne i32 %a.1, 20
call void @use.i1(i1 %true.1)
ret void
false: ; preds = %entry
call void @use(i32 %a.1)
ret void
}
Reviewers: efriedma, davide, mssimpso, nikic
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D77808
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
visitExtractValueInst uses mergeInValue, so it already can handle
constant ranges. Initially the early exit was using isOverdefined to
keep things as NFC during the initial move to ValueLatticeElement.
As the function already supports constant ranges, it can just use
ValueState[&I].isOverdefined.
Reviewers: efriedma, mssimpso, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D78393
This patch updates the code that deals with conditions from predicate
info to make use of constant ranges.
For ssa_copy instructions inserted by PredicateInfo, we have 2 ranges:
1. The range of the original value.
2. The range imposed by the linked condition.
1. is known, 2. can be determined using makeAllowedICmpRegion. The
intersection of those ranges is the range for the copy.
With this patch, we get a nice increase in the number of instructions
eliminated by both SCCP and IPSCCP for some benchmarks:
For MultiSource, SPEC2000 & SPEC2006:
Tests: 237
Same hash: 170 (filtered out)
Remaining: 67
Metric: sccp.NumInstRemoved
Program base patch diff
test-suite...Source/Benchmarks/sim/sim.test 10.00 71.00 610.0%
test-suite...CFP2000/177.mesa/177.mesa.test 361.00 1626.00 350.4%
test-suite...encode/alacconvert-encode.test 141.00 602.00 327.0%
test-suite...decode/alacconvert-decode.test 141.00 602.00 327.0%
test-suite...CI_Purple/SMG2000/smg2000.test 1639.00 4093.00 149.7%
test-suite...peg2/mpeg2dec/mpeg2decode.test 75.00 163.00 117.3%
test-suite...T2006/401.bzip2/401.bzip2.test 358.00 513.00 43.3%
test-suite...rks/FreeBench/pifft/pifft.test 11.00 15.00 36.4%
test-suite...langs-C/unix-tbl/unix-tbl.test 4.00 5.00 25.0%
test-suite...lications/sqlite3/sqlite3.test 541.00 667.00 23.3%
test-suite.../CINT2000/254.gap/254.gap.test 243.00 299.00 23.0%
test-suite...ks/Prolangs-C/agrep/agrep.test 25.00 29.00 16.0%
test-suite...marks/7zip/7zip-benchmark.test 1135.00 1304.00 14.9%
test-suite...lications/ClamAV/clamscan.test 1105.00 1268.00 14.8%
test-suite...urce/Applications/lua/lua.test 398.00 436.00 9.5%
Metric: sccp.IPNumInstRemoved
Program base patch diff
test-suite...C/CFP2000/179.art/179.art.test 1.00 3.00 200.0%
test-suite...006/447.dealII/447.dealII.test 429.00 1056.00 146.2%
test-suite...nch/fourinarow/fourinarow.test 3.00 7.00 133.3%
test-suite...CI_Purple/SMG2000/smg2000.test 818.00 1748.00 113.7%
test-suite...ks/McCat/04-bisect/bisect.test 3.00 5.00 66.7%
test-suite...CFP2000/177.mesa/177.mesa.test 165.00 255.00 54.5%
test-suite...ediabench/gsm/toast/toast.test 18.00 27.00 50.0%
test-suite...telecomm-gsm/telecomm-gsm.test 18.00 27.00 50.0%
test-suite...ks/Prolangs-C/agrep/agrep.test 24.00 35.00 45.8%
test-suite...TimberWolfMC/timberwolfmc.test 43.00 62.00 44.2%
test-suite...encode/alacconvert-encode.test 46.00 66.00 43.5%
test-suite...decode/alacconvert-decode.test 46.00 66.00 43.5%
test-suite...langs-C/unix-tbl/unix-tbl.test 12.00 17.00 41.7%
test-suite...peg2/mpeg2dec/mpeg2decode.test 31.00 41.00 32.3%
test-suite.../CINT2000/254.gap/254.gap.test 117.00 154.00 31.6%
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D76611