Update all analysis passes and transforms to treat free calls just like FreeInst.
Remove RaiseAllocations and all its tests since FreeInst no longer needs to be raised.
llvm-svn: 84987
and exact flags. Because ConstantExprs are uniqued, creating an
expression with this flag causes all expressions with the same operands
to have the same flag, which may not be safe. Add, sub, mul, and sdiv
ConstantExprs are usually folded anyway, so the main interesting flag
here is inbounds, and the constant folder already knows how to set the
inbounds flag automatically in most cases, so there isn't an urgent need
for the API support.
This can be reconsidered in the future, but for now just removing these
API bits eliminates a source of potential trouble with little downside.
llvm-svn: 80959
code hints that it would be a good idea to inline
a function ("inline" keyword). No functional change
yet; FEs do not emit this and inliner does not use it.
llvm-svn: 80063
"private" symbols which the assember shouldn't strip, but which the linker may
remove after evaluation. This is mostly useful for Objective-C metadata.
This is plumbing, so we don't have a use of it yet. More to come, etc.
llvm-svn: 76385
default global context, while new *InContext() APIs have been added that take a LLVMContextRef parameter.
Apologies to anyone affected by this breakage.
llvm-svn: 74694
libraries instead of relinked objects, the interpreter, JIT, and native
target libraries were not being linked in to an ocaml program using the
ExecutionEngine.
llvm-svn: 74117
C bindings. Change all the backend "Initialize" functions to have C linkage.
Change the "llvm/Config/Targets.def" header to use C-style comments to avoid
compile warnings.
llvm-svn: 74026
Add lto_codegen_set_assembler_path() API which allows the linker to specify the
path to the assembler tool to run. When assembler is used (instead of compiler)
different command line options are used.
Add LTO_API_VERSION #define so clients (linkers) can conditionalize use of new APIs.
llvm-svn: 72823
and extern_weak_odr. These are the same as the non-odr versions,
except that they indicate that the global will only be overridden
by an *equivalent* global. In C, a function with weak linkage can
be overridden by a function which behaves completely differently.
This means that IP passes have to skip weak functions, since any
deductions made from the function definition might be wrong, since
the definition could be replaced by something completely different
at link time. This is not allowed in C++, thanks to the ODR
(One-Definition-Rule): if a function is replaced by another at
link-time, then the new function must be the same as the original
function. If a language knows that a function or other global can
only be overridden by an equivalent global, it can give it the
weak_odr linkage type, and the optimizers will understand that it
is alright to make deductions based on the function body. The
code generators on the other hand map weak and weak_odr linkage
to the same thing.
llvm-svn: 66339