While we indeed can't treat them as no-ops, i believe we can/should
do better than just modelling them as `unknown`. `inttoptr` story
is complicated, but for `ptrtoint`, it seems straight-forward
to model it just as a zext-or-trunc of unknown.
This may be important now that we track towards
making inttoptr/ptrtoint casts not no-op,
and towards preventing folding them into loads/etc
(see D88979/D88789/D88788)
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88806
I have introduced a new template PolySize class, where the template
parameter determines the type of quantity, i.e. for an element
count this is just an unsigned value. The ElementCount class is
now just a simple derivation of PolySize<unsigned>, whereas TypeSize
is more complicated because it still needs to contain the uint64_t
cast operator, since there are still many places in the code that
rely upon this implicit cast. As such the class also still needs
some of it's own operators.
I've tried to minimise the amount of code in the base PolySize
class, which led to a couple of changes:
1. In some places we were relying on '==' operator comparisons
between ElementCounts and the scalar value 1. I didn't put this
operator in the new PolySize class, and thought it was actually
clearer to use the isScalar() function instead.
2. I removed the isByteSized function and replaced it with calls
to isKnownMultipleOf(8).
I've also renamed NextPowerOf2 to be coefficientNextPowerOf2 so
that it's more consistent with coefficientDivideBy.
Differential Revision: https://reviews.llvm.org/D88409
And another step towards transforms not introducing inttoptr and/or
ptrtoint casts that weren't there already.
As we've been establishing (see D88788/D88789), if there is a int<->ptr cast,
it basically must stay as-is, we can't do much with it.
I've looked, and the most source of new such casts being introduces,
as far as i can tell, is this transform, which, ironically,
tries to reduce count of casts..
On vanilla llvm test-suite + RawSpeed, @ `-O3`, this results in
-33.58% less `IntToPtr`s (19014 -> 12629)
and +76.20% more `PtrToInt`s (18589 -> 32753),
which is an increase of +20.69% in total.
However just on RawSpeed, where i know there are basically
none `IntToPtr` in the original source code,
this results in -99.27% less `IntToPtr`s (2724 -> 20)
and +82.92% more `PtrToInt`s (4513 -> 8255).
which is again an increase of 14.34% in total.
To me this does seem like the step in the right direction,
we end up with strictly less `IntToPtr`, but strictly more `PtrToInt`,
which seems like a reasonable trade-off.
See https://reviews.llvm.org/D88860 / https://reviews.llvm.org/D88995
for some more discussion on the subject.
(Eventually, `CastInst::isNoopCast()`/`CastInst::isEliminableCastPair`
should be taught about this, yes)
Reviewed By: nlopes, nikic
Differential Revision: https://reviews.llvm.org/D88979
This expands upon the inloop reductions added in e9761688e41cb9e976,
allowing them to be inserted into tail folded loops. Reductions are
generates with the form:
x = select(mask, vecop, zero)
v = vecreduce.add(x)
c = add chain, v
Where zero here is chosen as the identity value for add reductions. The
backend is then expected to fold the select and the vecreduce into a
single predicated instruction.
Most of the code is fairly straight forward, except for the creation of
blockmasks which need to ensure they are created in dominance order. The
order they are added is altered to be after any phis, keeping the
requirements for the underlying IR.
Differential Revision: https://reviews.llvm.org/D84451
As shown in the affected test, we could increase instruction
count without this limitation. There's another test with extra
use that shows we still convert directly to a real "sext" if
possible.
This is my first LLVM patch, so please tell me if there are any process issues.
The main observation for this patch is that we can lower UMIN/UMAX with v8i16 by using unsigned saturated subtractions in a clever way. Previously this operation was lowered by turning the signbit of both inputs and the output which turns the unsigned minimum/maximum into a signed one.
We could use this trick in reverse for lowering SMIN/SMAX with v16i8 instead. In terms of latency/throughput this is the needs one large move instruction. It's just that the sign bit turning has an increased chance of being optimized further. This is particularly apparent in the "reduce" test cases. However due to the slight regression in the single use case, this patch no longer proposes this.
Unfortunately this argument also applies in reverse to the new lowering of UMIN/UMAX with v8i16 which regresses the "horizontal-reduce-umax", "horizontal-reduce-umin", "vector-reduce-umin" and "vector-reduce-umax" test cases a bit with this patch. Maybe some extra casework would be possible to avoid this. However independent of that I believe that the benefits in the common case of just 1 to 3 chained min/max instructions outweighs the downsides in that specific case.
Patch By: @TomHender (Tom Hender) ActuallyaDeviloper
Differential Revision: https://reviews.llvm.org/D87236
If value tracking can confirm that a shift value is less than the type bitwidth then we can more confidently fold general or(shl(a,x),lshr(b,sub(bw,x))) patterns to a funnel/rotate intrinsic pattern without causing bad codegen regressions in the backend (see D89139).
Differential Revision: https://reviews.llvm.org/D88783
This exposes the helper for other power-of-2 instcombine folds that I'm intending to add vector support to.
The helper only operated on power-of-2 constants so getExactLogBase2 is a more accurate name.
This patch is a refactoring of how we process spills and allocas during CoroSplit.
In the previous implementation, everything that needs to go to the heap is put into Spills, including all the values defined by allocas.
And the way to identify a Spill, is to check whether there exists a use-def relationship that crosses suspension points.
This approach is fundamentally confusing, and unfortunately, incorrect.
First of all, allocas are always process differently than spills, hence it's quite confusing to put them together. It's a much cleaner to separate them and process them separately.
Doing so simplify lots of code and makes the logic more clear and easier to reason about.
Secondly, use-def relationship is insufficient to decide whether a value defined by AllocaInst needs to go to the heap.
There are many cases where a value defined by AllocaInst can implicitly be used across suspension points without a direct use-def relationship.
For example, you can store the address of an alloca into the heap, and load that address after suspension. Or you can escape the address into an object through a function call.
Or you can have a PHINode that takes two allocas, and this PHINode is used across suspension point (when this happens, the existing implementation will spill the PHINode, a.k.a a stack adddress to the heap!).
All these issues suggest that we need to separate spill and alloca in order to properly implement this.
This patch does not yet fix these bugs, however it sets up the code in a better shape so that we can start fixing them in the next patch.
The core idea of this patch is to add a new struct called FrameDataInfo, which contains all Spills, all Allocas, and a map from each definition to its layout index in the frame (FieldIndexMap).
Spills and Allocas are identified, stored and processed independently. When they are initially added to the frame, we record their field index through FieldIndexMap. When the frame layout is finalized, we update each index into their final layout index.
In doing so, I also cleaned up a few things and also discovered a few other bugs.
Cleanups:
1. Found out that PromiseFieldId is not used, delete it.
2. Previously, SpillInfo is a vector, which is strange because every def can have multiple users. This patch cleans it up by turning it into a map from def to users.
3. Previously, a frame Field struct contains a list of Spills that field corresponds to. This isn't necessary since we only need the layout index for each given definition. This patch removes that list. Instead, we connect each field and definition using the FieldIndexMap.
4. All the loops that process Spills are simplified now because we use a map instead of a vector.
Bugs:
It seems that we are only keeping llvm.dbg.declare intrinsics in the .resume part of the function. The ramp function will no longer has it. This means we are dropping some debug information in the ramp function.
The next step is to start fixing the bugs where the implementation fails to identify some allocas that should live on the frame.
Differential Revision: https://reviews.llvm.org/D88872
The bextri intrinsic has a ImmArg attribute which will be converted
in SelectionDAG using TargetConstant. We previously converted this
to a plain Constant to allow X86ISD::BEXTR to call SimplifyDemandedBits
on it.
But while trying to decide if D89178 was safe, I realized that
this conversion of TargetConstant to Constant would be one case
where that would break.
So this patch adds a new opcode specifically for the immediate case.
And then teaches computeKnownBits and SimplifyDemandedBits to also
handle it, but not try to SimplifyDemandedBits on it. To make up
for that, I immediately masked the constant to 16 bits when
converting from the intrinsic node to the X86ISD node.
The following code doesn't compile
uint64_t i = x.load(std::memory_order_relaxed);
return 0;
when CMAKE_C_FLAGS set to -Werror -Wall, thus incorrectly
breaking the CMake configuration step:
-- Looking for __atomic_load_8 in atomic
-- Looking for __atomic_load_8 in atomic - not found
CMake Error at cmake/modules/CheckAtomic.cmake:79 (message):
Host compiler appears to require libatomic for 64-bit operations, but
cannot find it.
Call Stack (most recent call first):
cmake/config-ix.cmake:360 (include)
CMakeLists.txt:671 (include)
Resigning from security group as Azul representative as I have left Azul. Previously communicated via email with security group.
Differential Revision: https://reviews.llvm.org/D88933
At AMD, in an internal audit of our code, we found some corner cases
where we were not quite differentiating targets enough for some old
hardware. This commit is part of fixing that by adding three new
targets:
* The "Oland" and "Hainan" variants of gfx601 are now split out into
gfx602. LLPC (in the GPUOpen driver) and other front-ends could use
that to avoid using the shaderZExport workaround on gfx602.
* One variant of gfx703 is now split out into gfx705. LLPC and other
front-ends could use that to avoid using the
shaderSpiCsRegAllocFragmentation workaround on gfx705.
* The "TongaPro" variant of gfx802 is now split out into gfx805.
TongaPro has a faster 64-bit shift than its former friends in gfx802,
and a subtarget feature could be set up for that to take advantage of
it. This commit does not make that change; it just adds the target.
V2: Add clang changes. Put TargetParser list in order.
V3: AMDGCNGPUs table in TargetParser.cpp needs to be in GPUKind order,
so fix the GPUKind order.
Differential Revision: https://reviews.llvm.org/D88916
Change-Id: Ia901a7157eb2f73ccd9f25dbacec38427312377d
There are a number of places in RDA where we assume the block will not
be empty. This isn't necessarily true for tail predicated loops where we
have removed instructions. This attempt to make the pass more resilient
to empty blocks, not casting pointers to machine instructions where they
would be invalid.
The test contains a case that was previously failing, but recently been
hidden on trunk. It contains an empty block to begin with to show a
similar error.
Differential Revision: https://reviews.llvm.org/D88926
This patch adds support for DWARF attribute DW_AT_rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF attribute
DW_AT_rank is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89141
MemCpyOpt can hoist stores while load+store pairs into memcpy.
This hoisting can currently result in stores being executed that
weren't guaranteed to execute in the original problem.
Differential Revision: https://reviews.llvm.org/D89154
Currently we allow passing pointers from deopt bundle on VReg only if
they were seen in list of gc-live pointers passed on VRegs.
This means that for the case of empty gc-live bundle we spill deopt
bundle's pointers. This change allows lowering deopt pointers to VRegs
in case of empty gc-live bundle. In case of non-empty gc-live bundle,
behavior does not change.
Reviewed By: skatkov
Differential Revision: https://reviews.llvm.org/D88999
This patch introduce files that just enough for lib/Target/CSKY to compile.
Notably a basic CSKYTargetMachine and CSKYTargetInfo.
Differential Revision: https://reviews.llvm.org/D88466