1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
Commit Graph

10 Commits

Author SHA1 Message Date
Jia Liu
b077b6085d Emacs-tag and some comment fix for all ARM, CellSPU, Hexagon, MBlaze, MSP430, PPC, PTX, Sparc, X86, XCore.
llvm-svn: 150878
2012-02-18 12:03:15 +00:00
Evan Cheng
68ba5536f3 - Add MachineInstrBundle.h and MachineInstrBundle.cpp. This includes a function
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def
  and use lists of the BUNDLE instruction) and a pass to unpack bundles.
- Teach more of MachineBasic and MachineInstr methods to be bundle aware.
- Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to
  prevent IT blocks from being broken apart.

llvm-svn: 146542
2011-12-14 02:11:42 +00:00
Evan Cheng
1acd685d87 Add bundle aware API for querying instruction properties and switch the code
generator to it. For non-bundle instructions, these behave exactly the same
as the MC layer API.

For properties like mayLoad / mayStore, look into the bundle and if any of the
bundled instructions has the property it would return true.
For properties like isPredicable, only return true if *all* of the bundled
instructions have the property.
For properties like canFoldAsLoad, isCompare, conservatively return false for
bundles.

llvm-svn: 146026
2011-12-07 07:15:52 +00:00
Evan Cheng
4a169be530 - Rename TargetInstrDesc, TargetOperandInfo to MCInstrDesc and MCOperandInfo and
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.

llvm-svn: 134021
2011-06-28 19:10:37 +00:00
Evan Cheng
2c06c8b3c2 More refactoring. Move getRegClass from TargetOperandInfo to TargetInstrInfo.
llvm-svn: 133944
2011-06-27 21:26:13 +00:00
Bob Wilson
3daeb462cb This patch combines several changes from Evan Cheng for rdar://8659675.
Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
   of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
   additional pipeline stall. So it's frequently better to single codegen
   vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
   stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
   vmla + vmla is very bad. But this isn't ideal either:
     vmul
     vadd
     vmla
   Instead, we want to expand the second vmla:
     vmla
     vmul
     vadd
   Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
   faster.

Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.

A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
   compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
   fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
   vmla / vmls will trigger one of the special hazards.

Enable these fp vmlx codegen changes for Cortex-A9.

llvm-svn: 129775
2011-04-19 18:11:57 +00:00
Evan Cheng
f540b0e0f6 VFP single precision arith instructions can go down to NEON pipeline, but on Cortex-A8 only.
llvm-svn: 126238
2011-02-22 19:53:14 +00:00
Evan Cheng
4d9d54e44e Eliminate unneeded #include's.
llvm-svn: 120971
2010-12-05 23:41:43 +00:00
Evan Cheng
854ec53564 Remove an unused variable.
llvm-svn: 120964
2010-12-05 23:03:35 +00:00
Evan Cheng
fc78767730 Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
   of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
   additional pipeline stall. So it's frequently better to single codegen
   vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
   stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
   vmla + vmla is very bad. But this isn't ideal either:
     vmul
     vadd
     vmla
   Instead, we want to expand the second vmla:
     vmla
     vmul
     vadd
   Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
   faster.

Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.

A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
   compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
   fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
   vmla / vmls will trigger one of the special hazards.

Work in progress, only A+B are enabled.

llvm-svn: 120960
2010-12-05 22:04:16 +00:00