There are still 4 tests that check for DW_AT_MIPS_linkage_name,
because they specify DWARF 2 or 3 in the module metadata. So, I didn't
create an explicit version-based test for the attribute.
Differential Revision: http://reviews.llvm.org/D8227
llvm-svn: 231880
This lets us pass the symbol to the constructor and avoid the mutable field.
This also opens the way for outputting the symbol only when needed, instead
of outputting them at the start of the file.
llvm-svn: 231859
Follow up from r231505.
Fix the non-determinism by using a MapVector and reintroduce the AArch64
testcase. Defer deleting the got candidates up to the end and remove
them in a bulk, avoiding linear time removal of each element.
Thanks to Renato Golin for trying it out on other platforms.
llvm-svn: 231830
This makes code that uses section relative expressions (debug info) simpler and
less brittle.
This is still a bit awkward as the symbol is created late and has to be
stored in a mutable field.
I will move the symbol creation earlier in the next patch.
llvm-svn: 231802
When referring to a symbol in a dwarf section on ELF we should use
.long foo
instead of
.long foo - .debug_something
because ELF is unaware of the content of the sections and therefore needs
relocations. This has nothing to do with optimizing a -0.
llvm-svn: 231751
They mark the start of a compile unit, so name them .Lcu_*. Using
Section->getLabelBeginName() makes it looks like they mark the start of the
section.
While at it, switch to createTempSymbol to avoid collisions with labels
created in inline assembly. Not sure if a "don't crash" test is worth it.
With this getLabelBeginName is dead, delete it.
llvm-svn: 231750
Last commit fixed the handling of hash collisions, but it introdcuced
unneeded bucket terminators in some places. The generated table was
correct, it can just be a tiny bit smaller. As the previous table was
correct, the test doesn't need updating. If we really wanted to test
this, I could add the section size to the dwarf dump and test for a
precise value there. IMO the correctness test is sufficient.
llvm-svn: 231748
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
It turns out accelerator tables where totally broken if they contained
entries with colliding hashes. The failure mode is pretty bad, as it not
only impacted the colliding entries, but would basically make all the
entries after the first hash collision pointing in the wrong place.
The testcase uses the symbol names that where found to collide during a
clang build.
From a performance point of view, the patch adds a sort and a linear
walk over each bucket contents. While it has a measurable impact on the
accelerator table emission, it's not showing up significantly in clang
profiles (and I'd argue that correctness is priceless :-)).
llvm-svn: 231732
I have a test for that issue, but I didn't include it in the commit as it's
a 200KB file for a pretty minor issue. (The reason the file is so big is
that it needs > 1024 variables/functions to trigger and that with debug
information.
The issue/fix on the other side is totally trivial. If poeple want the test
commited, I can do that. It just didn't seem worth it to me.
llvm-svn: 231701
In the case where just tables are part of the function section, this produces
more readable assembly by avoiding switching to the eh section and back
to .text.
This would also break with non unique section names, as trying to switch to
a unique section actually creates a new one.
llvm-svn: 231677
Add MachO 32-bit (i.e. arm and x86) support for replacing global GOT equivalent
symbol accesses. Unlike 64-bit targets, there's no GOTPCREL relocation, and
access through a non_lazy_symbol_pointers section is used instead.
-- before
_extgotequiv:
.long _extfoo
_delta:
.long _extgotequiv-_delta
-- after
_delta:
.long L_extfoo$non_lazy_ptr-_delta
.section __IMPORT,__pointers,non_lazy_symbol_pointers
L_extfoo$non_lazy_ptr:
.indirect_symbol _extfoo
.long 0
llvm-svn: 231475
Follow up r230264 and add ARM64 support for replacing global GOT
equivalent symbol accesses by references to the GOT entry for the final
symbol instead, example:
-- before
.globl _foo
_foo:
.long 42
.globl _gotequivalent
_gotequivalent:
.quad _foo
.globl _delta
_delta:
.long _gotequivalent-_delta
-- after
.globl _foo
_foo:
.long 42
.globl _delta
Ltmp3:
.long _foo@GOT-Ltmp3
llvm-svn: 231474
To be used/tested by llvm-dsymutil. (llvm-dsymutil does a 'static' link,
no need for relocations for most things, so it'll just emit raw integers
for most attributes)
llvm-svn: 231298
(They are called emitDwarfDIE and emitDwarfAbbrevs in their new home)
llvm-dsymutil wants to reuse that code, but it doesn't have a DwarfUnit or
a DwarfDebug object to call those. It has access to an AsmPrinter though.
Having emitDIE in the AsmPrinter also removes the DwarfFile dependency
on DwarfDebug, and thus the patch drops that field.
Differential Revision: http://reviews.llvm.org/D8024
llvm-svn: 231210
frame register before checking if there is a DWARF register number for it.
Thanks to H.J. Lu for diagnosing this and providing the testcase!
llvm-svn: 231121
The cause of the issue is the interaction of two factors:
1) When generating a DW_TAG_imported_declaration DIE which imports another
imported declaration, the code in AsmPrinter/DwarfCompileUnit.cpp
asserts that the second imported declaration must already have a DIE.
2) There is a non-determinism in the order in which imported declarations
within the same scope are processed.
Because of the non-determinism (2), it is possible that an imported
declaration is processed before another one it depends on, breaking the
assumption in (1).
The source of the non-determinism is that the imported declaration
DIDescriptors are sorted by scope in DwarfDebug::beginModule(); however that
sort is not a stable_sort, therefore the order of the declarations within
the same scope is not preserved. The attached patch changes the std::sort to
a std::stable_sort and it fixes the problem.
Test omitted due to it being non-deterministic and depending on the
implementation of std::sort.
llvm-svn: 231100
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 without the assertion in DebugLocEntry::finalize()
because not all Machine registers can be lowered into DWARF register
numbers and floating point constants cannot be expressed.
llvm-svn: 231023
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 with a relaxed assertion in DebugLocEntry::finalize()
that allows for empty DWARF expressions for constant FP values.
llvm-svn: 230975
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
llvm-svn: 230930
This work is currently being rethought along different lines and
if this work is needed it can be resurrected out of svn. Remove it
for now as no current work in ongoing on it and it's unused. Verified
with the authors before removal.
llvm-svn: 230780
This removes a bit of duplicated code and more importantly, remembers the
labels so that they don't need to be looked up by name.
This in turn allows for any name to be used and avoids a crash if the name
we wanted was already taken.
llvm-svn: 230772
Front-ends could use global unnamed_addr to hold pointers to other
symbols, like @gotequivalent below:
@foo = global i32 42
@gotequivalent = private unnamed_addr constant i32* @foo
@delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64),
i64 ptrtoint (i32* @delta to i64))
to i32)
The global @delta holds a data "PC"-relative offset to @gotequivalent,
an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows:
.globl _foo
_foo:
.long 42
.globl _gotequivalent
_gotequivalent:
.quad _foo
.globl _delta
_delta:
.long _gotequivalent-_delta
Since unnamed_addr indicates that the address is not significant, only
the content, we can optimize the case above by replacing pc-relative
accesses to "GOT equivalent" globals, by a PC relative access to the GOT
entry of the final symbol instead. Therefore, "delta" can contain a pc
relative relocation to foo's GOT entry and we avoid the emission of
"gotequivalent", yielding the assembly code below:
.globl _foo
_foo:
.long 42
.globl _delta
_delta:
.long _foo@GOTPCREL+4
There are a couple of advantages of doing this: (1) Front-ends that need
to emit a great deal of data to store pointers to external symbols could
save space by not emitting such "got equivalent" globals and (2) IR
constructs combined with this opt opens a way to represent GOT pcrel
relocations by using the LLVM IR, which is something we previously had
no way to express.
Differential Revision: http://reviews.llvm.org/D6922
rdar://problem/18534217
llvm-svn: 230264