1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00

5 Commits

Author SHA1 Message Date
Chandler Carruth
710380f52f [attrs] Move the norecurse deduction to operate on the node set rather
than the SCC object, and have it scan the instruction stream directly
rather than relying on call records.

This makes the behavior of this routine consistent between libc routines
and LLVM intrinsics for libc routines. We can go and start teaching it
about those being norecurse, but we should behave the same for the
intrinsic and the libc routine rather than differently. I chatted with
James Molloy and the inconsistency doesn't seem intentional and likely
is due to intrinsic calls not being modelled in the call graph analyses.

This also fixes a bug where we would deduce norecurse on optnone
functions, when generally we try to handle optnone functions as-if they
were replaceable and thus unanalyzable.

llvm-svn: 260813
2016-02-13 08:47:51 +00:00
Chandler Carruth
1b5532dd29 [attrs] Split the late-revisit pattern for deducing norecurse in
a top-down manner into a true top-down or RPO pass over the call graph.

There are specific patterns of function attributes, notably the
norecurse attribute, which are most effectively propagated top-down
because all they us caller information.

Walk in RPO over the call graph SCCs takes the form of a module pass run
immediately after the CGSCC pass managers postorder walk of the SCCs,
trying again to deduce norerucrse for each singular SCC in the call
graph.

This removes a very legacy pass manager specific trick of using a lazy
revisit list traversed during finalization of the CGSCC pass. There is
no analogous finalization step in the new pass manager, and a lazy
revisit list is just trying to produce an RPO iteration of the call
graph. We can do that more directly if more expensively. It seems
unlikely that this will be the expensive part of any compilation though
as we never examine the function bodies here. Even in an LTO run over
a very large module, this should be a reasonable fast set of operations
over a reasonably small working set -- the function call graph itself.

In the future, if this really is a compile time performance issue, we
can look at building support for both post order and RPO traversals
directly into a pass manager that builds and maintains the PO list of
SCCs.

Differential Revision: http://reviews.llvm.org/D15785

llvm-svn: 257163
2016-01-08 10:55:52 +00:00
James Molloy
64e756bd07 Revert "Revert "[FunctionAttrs] Identify norecurse functions""
This reapplies this patch, with test fixes.

llvm-svn: 252871
2015-11-12 10:55:20 +00:00
James Molloy
9cd723ec63 Revert "[FunctionAttrs] Identify norecurse functions"
This reverts commit r252862. This introduced test failures and I'm reverting while I investigate how this happened.

llvm-svn: 252863
2015-11-12 09:05:43 +00:00
James Molloy
4da975f03a [FunctionAttrs] Identify norecurse functions
A function can be marked as norecurse if:
  * The SCC to which it belongs has cardinality 1; and either
    a) It does not call any non-norecurse function. This includes self-recursion; or
    b) It only has one callsite and the function that callsite is within is marked norecurse.

a) is best propagated bottom-up and b) is best propagated top-down.

We build up the norecurse attributes bottom-up using the existing SCC pass, and mark functions with no obvious recursion (but not provably norecurse) to sweep later, top-down.

llvm-svn: 252862
2015-11-12 08:53:04 +00:00