1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
Commit Graph

34 Commits

Author SHA1 Message Date
Shiva Chen
a2029fa58e [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is

!DILabel(scope: !1, name: "foo", file: !2, line: 3)

We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is

llvm.dbg.label(metadata !1)

It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.

We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.

Differential Revision: https://reviews.llvm.org/D45024

Patch by Hsiangkai Wang.

llvm-svn: 331841
2018-05-09 02:40:45 +00:00
Daniel Neilson
f59acc15ad Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary:
 This is a resurrection of work first proposed and discussed in Aug 2015:
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

 The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.

 This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.

 In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
   require that the alignments for source & dest be equal.

 For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)

 Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.

s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g

 The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reviewers: pete, hfinkel, lhames, reames, bollu

Reviewed By: reames

Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits

Differential Revision: https://reviews.llvm.org/D41675

llvm-svn: 322965
2018-01-19 17:13:12 +00:00
Reid Kleckner
67886a34d2 Parse and print DIExpressions inline to ease IR and MIR testing
Summary:
Most DIExpressions are empty or very simple. When they are complex, they
tend to be unique, so checking them inline is reasonable.

This also avoids the need for CodeGen passes to append to the
llvm.dbg.mir named md node.

See also PR22780, for making DIExpression not be an MDNode.

Reviewers: aprantl, dexonsmith, dblaikie

Subscribers: qcolombet, javed.absar, eraman, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D37075

llvm-svn: 311594
2017-08-23 20:31:27 +00:00
Adrian Prantl
c83c29a7b7 Remove the obsolete offset parameter from @llvm.dbg.value
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.

rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951

llvm-svn: 309426
2017-07-28 20:21:02 +00:00
Adrian Prantl
57907269da [DIExpression] Introduce a dedicated DW_OP_LLVM_fragment operation
so we can stop using DW_OP_bit_piece with the wrong semantics.

The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html

The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.

Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.

Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809

llvm-svn: 288683
2016-12-05 18:04:47 +00:00
Adrian Prantl
fb3abba237 [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.

Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.

Motivation
----------

Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.

We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.

Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.

http://reviews.llvm.org/D19034
<rdar://problem/25256815>

llvm-svn: 266446
2016-04-15 15:57:41 +00:00
Adrian Prantl
1653aa9f14 testcase gardening: update the emissionKind enum to the new syntax. (NFC)
llvm-svn: 265081
2016-04-01 00:16:49 +00:00
Pete Cooper
b753649d63 Revert "Change memcpy/memset/memmove to have dest and source alignments."
This reverts commit r253511.

This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787

llvm-svn: 253543
2015-11-19 05:56:52 +00:00
Pete Cooper
aca4c5cdc6 Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

These intrinsics currently have an explicit alignment argument which is
required to be a constant integer.  It represents the alignment of the
source and dest, and so must be the minimum of those.

This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments.  The alignment
argument itself is removed.

There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe.  For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.

For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)

For out of tree owners, I was able to strip alignment from calls using sed by replacing:
  (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
  $1i1 false)

and similarly for memmove and memcpy.

I then added back in alignment to test cases which needed it.

A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.

In IRBuilder itself, a new argument was added.  Instead of calling:
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)

There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool.  This is to prevent isVolatile here from passing its default
parameter to the source alignment.

Note, changes in future can now be made to codegen.  I didn't change anything here, but this
change should enable better memcpy code sequences.

Reviewed by Hal Finkel.

llvm-svn: 253511
2015-11-18 22:17:24 +00:00
Peter Collingbourne
5b721561aa DI: Reverse direction of subprogram -> function edge.
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.

For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.

This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.

Since this is an IR change, a bitcode upgrade has been provided.

Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.

Differential Revision: http://reviews.llvm.org/D14265

llvm-svn: 252219
2015-11-05 22:03:56 +00:00
Duncan P. N. Exon Smith
0c1aee0b16 DI: Require subprogram definitions to be distinct
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'.  Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.

While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore.  Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node.  The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.

I updated almost all the IR with the following script:

    git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
    grep -v test/Bitcode |
    xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'

Likely some variant of would work for out-of-tree testcases.

llvm-svn: 246327
2015-08-28 20:26:49 +00:00
Duncan P. N. Exon Smith
87c77233df DI: Disallow uniquable DICompileUnits
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode.  This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.

Almost all the testcases were updated with this script:

    git grep -e '= !DICompileUnit' -l -- test |
    grep -v test/Bitcode |
    xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'

I imagine something similar should work for out-of-tree testcases.

llvm-svn: 243885
2015-08-03 17:26:41 +00:00
Duncan P. N. Exon Smith
08a36a35c8 DI: Remove DW_TAG_arg_variable and DW_TAG_auto_variable
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.

Most of the testcase updates were generated by the following sed script:

    find test/ -name "*.ll" -o -name "*.mir" |
    xargs grep -l 'DILocalVariable' |
    xargs sed -i '' \
      -e 's/tag: DW_TAG_arg_variable, //' \
      -e 's/tag: DW_TAG_auto_variable, //'

There were only a handful of tests in `test/Assembly` that I needed to
update by hand.

(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`.  I've added a FIXME to that effect.)

llvm-svn: 243774
2015-07-31 18:58:39 +00:00
Duncan P. N. Exon Smith
09b5c9c24d IR: Give 'DI' prefix to debug info metadata
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`.  The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.

Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one.  It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs.  YMMV of
course.

Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py.  I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three.  It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).

Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.

llvm-svn: 236120
2015-04-29 16:38:44 +00:00
Duncan P. N. Exon Smith
8d1b74869c DebugInfo: Move new hierarchy into place
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464.  I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned.  Let me know if I'm wrong :).

The code changes are fairly mechanical:

  - Bumped the "Debug Info Version".
  - `DIBuilder` now creates the appropriate subclass of `MDNode`.
  - Subclasses of DIDescriptor now expect to hold their "MD"
    counterparts (e.g., `DIBasicType` expects `MDBasicType`).
  - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
    for printing comments.
  - Big update to LangRef to describe the nodes in the new hierarchy.
    Feel free to make it better.

Testcase changes are enormous.  There's an accompanying clang commit on
its way.

If you have out-of-tree debug info testcases, I just broke your build.

  - `upgrade-specialized-nodes.sh` is attached to PR22564.  I used it to
    update all the IR testcases.
  - Unfortunately I failed to find way to script the updates to CHECK
    lines, so I updated all of these by hand.  This was fairly painful,
    since the old CHECKs are difficult to reason about.  That's one of
    the benefits of the new hierarchy.

This work isn't quite finished, BTW.  The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro).  Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers.  I
also expect to make a few schema changes now that it's easier to reason
about everything.

llvm-svn: 231082
2015-03-03 17:24:31 +00:00
David Blaikie
ab043ff680 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie
0d99339102 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Adrian Prantl
f10ec50249 Debug info: Use DW_OP_bit_piece instead of DW_OP_piece in the
intermediate representation. This
- increases consistency by using the same granularity everywhere
- allows for pieces < 1 byte
- DW_OP_piece didn't actually allow storing an offset.

Part of PR22495.

llvm-svn: 228631
2015-02-09 23:57:15 +00:00
Adrian Prantl
5def96f7e9 Reapply: Teach SROA how to update debug info for fragmented variables.
This reapplies r225379.

ChangeLog:
- The assertion that this commit previously ran into about the inability
  to handle indirect variables has since been removed and the backend
  can handle this now.
- Testcases were upgrade to the new MDLocation format.
- Instead of keeping a DebugDeclares map, we now use
  llvm::FindAllocaDbgDeclare().

Original commit message follows.

Debug info: Teach SROA how to update debug info for fragmented variables.
This allows us to generate debug info for extremely advanced code such as

 typedef struct { long int a; int b;} S;

 int foo(S s) {
   return s.b;
 }

which at -O1 on x86_64 is codegen'd into

 define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 {
   ret i32 %s.coerce1, !dbg !24
 }

with this patch we emit the following debug info for this

 TAG_formal_parameter [3]
   AT_location( 0x00000000
                0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004
                0x0000000000000006 - 0x0000000000000008: rdi, piece 0x00000008, rax, piece 0x00000004 )
                AT_name( "s" )
                AT_decl_file( "/Volumes/Data/llvm/_build.ninja.release/test.c" )

Thanks to chandlerc, dblaikie, and echristo for their feedback on all
previous iterations of this patch!

llvm-svn: 226598
2015-01-20 19:42:22 +00:00
Duncan P. N. Exon Smith
4a5feedcaa IR: Move MDLocation into place
This commit moves `MDLocation`, finishing off PR21433.  There's an
accompanying clang commit for frontend testcases.  I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.

This changes the schema for `DebugLoc` and `DILocation` from:

    !{i32 3, i32 7, !7, !8}

to:

    !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)

Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.

llvm-svn: 226048
2015-01-14 22:27:36 +00:00
Adrian Prantl
d3017f3565 Revert "Reapply: Teach SROA how to update debug info for fragmented variables."
This reverts commit r225379 while investigating an assertion failure reported
by Alexey.

llvm-svn: 225424
2015-01-08 02:02:00 +00:00
Adrian Prantl
f59b4b4d08 Reapply: Teach SROA how to update debug info for fragmented variables.
The two buildbot failures were addressed in LLVM r225378 and CFE r225359.

This rapplies commit 225272 without modifications.

llvm-svn: 225379
2015-01-07 20:52:22 +00:00
Adrian Prantl
72c4811183 Revert "Reapply: Teach SROA how to update debug info for fragmented variables."
because of a tsan buildbot failure.
This reverts commit 225272.

Fix should be coming soon.

llvm-svn: 225288
2015-01-06 19:47:27 +00:00
Adrian Prantl
452a905a99 Reapply: Teach SROA how to update debug info for fragmented variables.
This also rolls in the changes discussed in http://reviews.llvm.org/D6766.
Defers migrating the debug info for new allocas until after all partitions
are created.

Thanks to Chandler for reviewing!

llvm-svn: 225272
2015-01-06 17:14:10 +00:00
Chandler Carruth
5fb4297ebd Revert r224739: Debug info: Teach SROA how to update debug info for
fragmented variables.

This caused codegen to start crashing when we built somewhat large
programs with debug info and optimizations. 'check-msan' hit in, and
I suspect a bootstrap would as well. I mailed a test case to the
review thread.

llvm-svn: 224750
2014-12-23 02:58:14 +00:00
Adrian Prantl
85354b18d3 Debug info: Teach SROA how to update debug info for fragmented variables.
This allows us to generate debug info for extremely advanced code such as

  typedef struct { long int a; int b;} S;

  int foo(S s) {
    return s.b;
  }

which at -O1 on x86_64 is codegen'd into

  define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 {
    ret i32 %s.coerce1, !dbg !24
  }

with this patch we emit the following debug info for this

  TAG_formal_parameter [3]
    AT_location( 0x00000000
                 0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004
                 0x0000000000000006 - 0x0000000000000008: rdi, piece 0x00000008, rax, piece 0x00000004 )
                 AT_name( "s" )
                 AT_decl_file( "/Volumes/Data/llvm/_build.ninja.release/test.c" )

Thanks to chandlerc, dblaikie, and echristo for their feedback on all
previous iterations of this patch!

llvm-svn: 224739
2014-12-22 22:26:00 +00:00
Duncan P. N. Exon Smith
9c5542c040 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Duncan P. N. Exon Smith
c1be4794ba Revert "Revert "DI: Fold constant arguments into a single MDString""
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash.  The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).

Original commit message follows.

--

This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

llvm-svn: 219010
2014-10-03 20:01:09 +00:00
Duncan P. N. Exon Smith
fb6bcc4eb2 Revert "DI: Fold constant arguments into a single MDString"
This reverts commit r218914 while I investigate some bots.

llvm-svn: 218918
2014-10-02 22:15:31 +00:00
Duncan P. N. Exon Smith
58b6077a79 DI: Fold constant arguments into a single MDString
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

llvm-svn: 218914
2014-10-02 21:56:57 +00:00
Adrian Prantl
2b1df58ebe Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
2014-10-01 18:55:02 +00:00
Adrian Prantl
0959156fa3 Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

llvm-svn: 218782
2014-10-01 18:10:54 +00:00
Adrian Prantl
229943585f Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

llvm-svn: 218778
2014-10-01 17:55:39 +00:00
Adrian Prantl
ca946260a4 Unbreak the gdb buildbot by not lowering dbg.declare intrinsics for arrays.
llvm-svn: 207284
2014-04-25 23:00:25 +00:00