numbers should be printed instead of symbolic register names in
MCAsmStreamer::EmitRegisterName. This is necessary because some versions of
GNU assembler won't accept code in which symbolic register names are used in
cfi directives. There is no change in behavior unless the flag is explicitly
set to true by a backend.
llvm-svn: 134635
DBG_VALUE 3.310000e+02, 0, !"ds"; dbg:sse.stepfft.c:138:18 @[ sse.stepfft.c:32:10 ]
DBG_VALUE 3.310000e+02, 0, !"ds"; dbg:sse.stepfft.c:138:18 @[ sse.stepfft.c:31:10 ]
These two MIs represent identical value, 3.31..., for one variable, ds, but they are not identical because the represent two separate instances of inlined variable "ds".
llvm-svn: 134620
hasPredecessorHelper function allows predecessors to be cached to speed up
repeated invocations. This fixes PR10186.
X.isPredecessorOf(Y) now just calls Y.hasPredecessor(X)
Y.hasPredecessor(X) calls Y.hasPredecessorHelper(X, Visited, Worklist) with
empty Visited and Worklist sets (i.e. no caching over invocations).
Y.hasPredecessorHelper(X, Visited, Worklist) caches search state in Visited
and Worklist to speed up repeated calls. The Visited set is searched for X
before going to the worklist to further search the DAG if necessary.
llvm-svn: 134592
So users of a CGI don't have to look up the value directly from the original
Record; just like the rest of the convenience values in the class.
llvm-svn: 134576
Unfortunately, the testcase I have is large and confidential, so I don't have a test to commit at the moment; I'll see if I can come up with something smaller where this issue reproduces.
<rdar://problem/9716278>
llvm-svn: 134565
vec.insert(vec.begin(), vec[3]);
The issue was that vec[3] returns a reference into the vector, which is invalidated when insert() memmove's the elements down to make space. The method needs to specifically detect and handle this case to correctly match std::vector's semantics.
Thanks to Howard Hinnant for clarifying the correct behavior, and explaining how std::vector solves this problem.
llvm-svn: 134554
This allows us to remove the (bogus and unneeded) encoding information from
the pseudo-instruction class definitions. All of the pseudos that haven't
been converted yet and still need encoding information instance from the normal
instruction classes and explicitly set isCodeGenOnly, and so are distinct
from this change.
llvm-svn: 134540
For now this is distinct from isCodeGenOnly, as code-gen-only
instructions can (and often do) still have encoding information
associated with them. Once we've migrated all of them over to true
pseudo-instructions that are lowered to real instructions prior to
the printer/emitter, we can remove isCodeGenOnly and just use isPseudo.
llvm-svn: 134539