1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
Commit Graph

957 Commits

Author SHA1 Message Date
Fraser Cormack
ac97ba67e8 [LangRef][NFC] Fix variable name in llvm.maxnum docs 2021-07-27 12:04:28 +01:00
Eli Friedman
2211738092 [LLVM IR] Allow volatile stores to trap.
Proposed alternative to D105338.

This is ugly, but short-term I think it's the best way forward: first,
let's formalize the hacks into a coherent model. Then we can consider
extensions of that model (we could have different flavors of volatile
with different rules).

Differential Revision: https://reviews.llvm.org/D106309
2021-07-26 10:51:00 -07:00
Fangrui Song
56c255e563 [LangRef] Reorder two paragraphs for comdat
so that IMAGE_COMDAT_SELECT_LARGEST refers to the correct example.
2021-07-25 12:53:14 -07:00
Fangrui Song
f767ab54db [LangRef] Clarify comdat
* ELF supports `nodeduplicate`.
* ELF calls the concept "section group". `GRP_COMDAT` emulates the PE COMDAT deduplication feature.
* "COMDAT group" is an ELF term. Avoid it for PE/COFF.
* WebAssembly supports comdat but only supports the `any` selection kind. https://bugs.llvm.org/show_bug.cgi?id=50531
* A comdat must be included or omitted as a unit. Both the compiler and the linker must obey this rule.
* A global object can be a member of at most one comdat.
* COFF requires a non-local linkage for non-`nodeduplicate` selection kinds.
* llvm.global_ctors/.llvm.global_dtors: if the third field is used on ELF, it must reference a global variable or function in a comdat

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D106300
2021-07-23 16:33:06 -07:00
Fangrui Song
dd6e19a41c [IR] Rename comdat noduplicates to comdat nodeduplicate
In the textual format, `noduplicates` means no COMDAT/section group
deduplication is performed. Therefore, if both sets of sections are retained, and
they happen to define strong external symbols with the same names,
there will be a duplicate definition linker error.

In PE/COFF, the selection kind lowers to `IMAGE_COMDAT_SELECT_NODUPLICATES`.
The name describes the corollary instead of the immediate semantics.  The name
can cause confusion to other binary formats (ELF, wasm) which have implemented/
want to implement the "no deduplication" selection kind. Rename it to be clearer.

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D106319
2021-07-20 12:47:10 -07:00
Teresa Johnson
8cd6bac764 [LangRef] Clarify support for multiple metadata attachments with same id
As discussed on D105251, currently the compiler does not support
multiple metadata attachments on instructions having the same
identifier, whereas it does for global objects. Note this in the
Language Reference manual for clarity.

See D105251 for discussions of history behind this divergence, and the
complexities and possible approaches of adding this support to
instructions in the future.

Differential Revision: https://reviews.llvm.org/D106304
2021-07-19 13:18:47 -07:00
Nikita Popov
dd3e030cca [BPF] Use elementtype attribute for preserve.array/struct.index intrinsics
Use the elementtype attribute introduced in D105407 for the
llvm.preserve.array/struct.index intrinsics. It carries the
element type of the GEP these intrinsics effectively encode.

This patch:

 * Adds a verifier check that the attribute is required.
 * Adds it in the IRBuilder methods for these intrinsics.
 * Autoupgrades old bitcode without the attribute.
 * Updates the lowering code to use the attribute rather than
   the pointer element type.
 * Updates lots of tests to specify the attribute.
 * Adds -force-opaque-pointers to the intrinsic-array.ll test
   to demonstrate they work now.

https://reviews.llvm.org/D106184
2021-07-17 11:09:18 +02:00
Nikita Popov
159ef87203 [LangRef] Add elementtype attribute
This adds an elementtype(<ty>) attribute, which can be used to
attach an element type to a pointer typed argument. It is similar
to byval/byref in purpose, but unlike those does not carry any
specific semantics by itself. However, certain intrinsics may
require it and interpret it in specific ways.

The in-tree use cases for this that I'm currently aware of are:

    call ptr @llvm.preserve.array.access.index.p0.p0(ptr elementtype(%ty) %base, i32 %dim, i32 %index)
    call ptr @llvm.preserve.struct.access.index.p0.p0(ptr elementtype(%ty) %base, i32 %gep_index, i32 %di_index)
    call token @llvm.experimental.gc.statepoint.p0(i64 0, i32 0, ptr elementtype(void ()) @foo, i32 0, i32 0, i32 0, i32 0, ptr addrspace(1) %obj)

Notably, the gc.statepoint case needs a function as element type,
in which case the workaround of adding a separate %ty undef
argument would not work, as arguments cannot be unsized.

Differential Revision: https://reviews.llvm.org/D105407
2021-07-15 18:04:25 +02:00
Philip Reames
79b01ec08e [langref] attempt to clarify semantics of inttoptr/ptrtoint for non-integral types
In review discussion on D104322, Eli and Roman quite reasonable raised concerns about the LangRef not really providing a precise definition for inttoptr/ptrtoint on non-integral types. These had previously been disallowed, but I'd pragmatically allowed them in ac81cb7e6. This is my attempt to improve the situation.

Differential Revision: https://reviews.llvm.org/D104547
2021-07-12 08:48:53 -07:00
Fangrui Song
3e6125b247 [LangRef] Fix typo about SHF_LINK_ORDER 2021-07-08 10:29:43 -07:00
Fangrui Song
6f7d20de03 [LangRef] Clarify !associated
Notably, a global variable with the metadata should generally not be referenced
by a function function. E.g. -fstack-size-section usage is fine, but
-fsanitize-coverage= used to have a linker GC problem (fixed by D97430).

Reviewed By: eugenis

Differential Revision: https://reviews.llvm.org/D104933
2021-07-08 10:07:10 -07:00
Jonas Devlieghere
3020664b33 Revert "[DebugInfo] Enforce implicit constraints on distinct MDNodes"
This reverts commit 8cd35ad854ab4458fd509447359066ea3578b494.

It breaks `TestMembersAndLocalsWithSameName.py` on GreenDragon and
Mikael Holmén points out in D104827 that bitcode files created with the
patch cannot be parsed with binaries built before it.
2021-07-02 15:57:07 -07:00
Alex Richardson
a73a5b4199 Place the BlockAddress type in the address space of the containing function
While this should not matter for most architectures (where the program
address space is 0), it is important for CHERI (and therefore Arm Morello).
We use address space 200 for all of our code pointers and without this
change we assert in the SelectionDAG handling of BlockAddress nodes.

It is also useful for AVR: previously programs targeting
AVR that attempt to read their own machine code
via a pointer to a label would instead read from RAM
using a pointer relative to the the start of program flash.

Reviewed By: dylanmckay, theraven
Differential Revision: https://reviews.llvm.org/D48803
2021-07-02 12:17:55 +01:00
Nick Desaulniers
fd64c3a741 [Inline] prevent inlining on noprofile mismatch
Similar to
commit bc044a88ee3c ("[Inline] prevent inlining on stack protector mismatch")

The noprofile function attribute is meant to prevent compiler
instrumentation from being inserted into a function. Inlining may defeat
the developer's intent. If the caller and callee don't either BOTH have
the attribute or BOTH lack the attribute, suppress inline substitution.

This matches behavior being proposed in GCC:
https://gcc.gnu.org/pipermail/gcc-patches/2021-June/573511.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80223

Add LangRef entry for noprofile fn attr, similar to text added in D93422
and D104944.

Reviewed By: MaskRay, melver, phosek

Differential Revision: https://reviews.llvm.org/D104810
2021-06-29 10:32:03 -07:00
Scott Linder
47e3a5ca06 [DebugInfo] Enforce implicit constraints on distinct MDNodes
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:

* DIExpression can currently be parsed from IR or read from bitcode
  as `distinct`, but this property is silently dropped when printing
  to IR. This causes accepted IR to fail to round-trip. As DIExpression
  appears inline at each use in the canonical form of IR, it cannot
  actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
  restricted to only appearing in contexts where there is no syntax for
  `distinct`, but for consistency it is treated equivalently to
  DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
  along with adding general support for the inverse restriction I went
  ahead and described this in Metadata.def and updated the parser to be
  general. Future nodes which have this restriction can share this
  support.

The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.

The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.

A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:

    !named = !{!0}
    !0 = !DIExpression()

Instead we would only accept the equivalent inlined version:

    !named = !{!DIExpression()}

This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:

    !named = !{!0}
    ; error: 'distinct' not allowed for !DIExpression()
    !0 = distinct !DIExpression()

Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.

Reviewed By: StephenTozer, t-tye

Differential Revision: https://reviews.llvm.org/D104827
2021-06-28 21:20:04 +00:00
Nick Desaulniers
520d135b42 [IR] remove assert since always_inline can appear on CallBase
I added an assertion in D91816 (documenting behavior added in D93422)
that callers and callees with mismatched fn attr's related to stack
protectors should not occur unless the callee was attributed
always_inline.

This falls apart when a call, invoke, or callbr (any instruction
inheriting from CallBase) itself has an always_inline attribute. Clang
will emit such attributes on Instructions when __attribute__((flatten))
is used to recursively force inlining from a caller.

Since these assertions only had the caller and callee Functions, and not
the call site (CallBase derived classes), we would have to search the
caller for such instructions to reconstruct the call site information.
But at that point, inlining has already occurred; the call site has
already been removed from the caller.

Remove the assertions, add a unit test for always_inline call sites, and
update the LangRef.

Another curiosity is that the always_inline Attribute on Instructions is
only expanded by the inline pass, not the always_inline pass.

Thanks to @pcc on this report when building Android's RunTime (ART)
interpreter.

Reviewed By: pcc, MaskRay

Differential Revision: https://reviews.llvm.org/D104944
2021-06-28 13:53:57 -07:00
Akira Hatanaka
252bda7ebd [ObjC][ARC] Ignore operand bundle "clang.arc.attachedcall" on a call if
the call's return type is void

Instead of trying hard to prevent global optimization passes such as
deadargelim from changing the return type to void, just ignore the
bundle if the return type is void. clang currently emits calls to
@llvm.objc.clang.arc.noop.use, which consumes the function call result,
immediately after the function call to prevent changes to the return
type, but optimization passes can delete the call to
@llvm.objc.clang.arc.noop.use if the function call doesn't return, which
enables deadargelim to change the return type.

rdar://76671438

Differential Revision: https://reviews.llvm.org/D103062
2021-06-28 11:02:30 -07:00
Melanie Blower
423a70f3f3 [llvm][clang][fpenv] Create new intrinsic llvm.arith.fence to control FP optimization at expression level
This intrinsic blocks floating point transformations by the optimizer.

Author: Pengfei

Reviewed By: LuoYuanke, Andy Kaylor, Craig Topper, kpn

Differential Revision: https://reviews.llvm.org/D99675
2021-06-28 12:26:52 -04:00
David Blaikie
a39a37f176 PR50708: Update link to Intel SIMD ABI 2021-06-27 14:55:08 -07:00
Bob Haarman
f3d75b435d [LangRef] clarify the meaning of noimplicitfloat
Adds some more text to the documentation for the noimplicitfloat
function attribute. Hopefully, this makes it clearer what
qualifies an implicit vs. explicit float, without becoming overly
long or going into target-specific details.

Reviewed By: rnk, craig.topper

Differential Revision: https://reviews.llvm.org/D104061
2021-06-24 13:57:15 -07:00
Nick Desaulniers
27175210c1 [LangRef] add note to warn-frame-size about ODR
As sugguested by @dblaikie in D104342.

Reviewed By: dblaikie

Differential Revision: https://reviews.llvm.org/D104736
2021-06-23 16:28:55 -07:00
Nick Desaulniers
2aca733d9e [IR] convert warn-stack-size from module flag to fn attr
Otherwise, this causes issues when building with LTO for object files
that use different values.

Link: https://github.com/ClangBuiltLinux/linux/issues/1395

Reviewed By: dblaikie, MaskRay

Differential Revision: https://reviews.llvm.org/D104342
2021-06-21 15:09:25 -07:00
Bjorn Pettersson
29ffba4b56 Update @llvm.powi to handle different int sizes for the exponent
This can be seen as a follow up to commit 0ee439b705e82a4fe20e2,
that changed the second argument of __powidf2, __powisf2 and
__powitf2 in compiler-rt from si_int to int. That was to align with
how those runtimes are defined in libgcc.
One thing that seem to have been missing in that patch was to make
sure that the rest of LLVM also handle that the argument now depends
on the size of int (not using the si_int machine mode for 32-bit).
When using __builtin_powi for a target with 16-bit int clang crashed.
And when emitting libcalls to those rtlib functions, typically when
lowering @llvm.powi), the backend would always prepare the exponent
argument as an i32 which caused miscompiles when the rtlib was
compiled with 16-bit int.

The solution used here is to use an overloaded type for the second
argument in @llvm.powi. This way clang can use the "correct" type
when lowering __builtin_powi, and then later when emitting the libcall
it is assumed that the type used in @llvm.powi matches the rtlib
function.

One thing that needed some extra attention was that when vectorizing
calls several passes did not support that several arguments could
be overloaded in the intrinsics. This patch allows overload of a
scalar operand by adding hasVectorInstrinsicOverloadedScalarOpd, with
an entry for powi.

Differential Revision: https://reviews.llvm.org/D99439
2021-06-17 09:38:28 +02:00
Simon Moll
91d4645488 [VP] Binary floating-point intrinsics.
This patch implements vector-predicated intrinsics on IR level for fadd,
fsub, fmul, fdiv and frem.  There operate in the default floating-point
environment. We will use constrained fp operand bundles for constrained
vector-predicated fp math (D93455).

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D93470
2021-06-14 08:51:41 +02:00
Philip Reames
5d8953a6cd Allow ptrtoint/inttoptr of non-integral pointer types in IR
I don't like landing this change, but it's an acknowledgement of a practical reality.  Despite not having well specified semantics for inttoptr and ptrtoint involving non-integral pointer types, they are used in practice.  Here's a quick summary of the current pragmatic reality:
* I happen to know that the main external user of non-integral pointers has effectively disabled the verifier rules.
* RS4GC (the lowering pass for abstract GC machine model which is the key motivation for non-integral pointers), even supports them.  We just have all the tests using an integral pointer space to let the verifier run.
* Certain idioms (such as alignment checks for alignment N, where any relocation is guaranteed to be N byte aligned) are fine in practice.
* As implemented, inttoptr/ptrtoint are CSEd and are not control dependent.  This means that any code which is intending to check a particular bit pattern at site of use must be wrapped in an intrinsic or external function call.

This change allows them in the Verifier, and updates the LangRef to specific them as implementation dependent.  This allows us to acknowledge current reality while still leaving ourselves room to punt on figuring out "good" semantics until the future.
2021-06-11 13:38:32 -07:00
Juneyoung Lee
0a59620fed [LangRef] Fix missing code highlighting format 2021-06-10 16:12:17 +09:00
madhur13490
308bc0d686 [LangRef] Add link to opaque pointers
Reviewed By: aeubanks

Differential Revision: https://reviews.llvm.org/D103981
2021-06-10 00:11:02 +05:30
cynecx
be221f0b41 [LangRef] update according to unwinding support in inline asm
https://reviews.llvm.org/D95745 introduced a new `unwind` keyword for inline assembler expressions. Inline asms marked with the `unwind` keyword allows stack unwinding from inline assembly because the compiler emits unwinding information ("around" the inline asm) as it would for calls/invokes. Unwinding the stack from within non-unwind inline asm may cause UB.

Reviewed By: Amanieu

Differential Revision: https://reviews.llvm.org/D102642
2021-05-31 09:01:46 +01:00
Tim Northover
859ff3505c SwiftTailCC: teach verifier musttail rules applicable to this CC.
SwiftTailCC has a different set of requirements than the C calling convention
for a tail call. The exact argument sequence doesn't have to match, but fewer
ABI-affecting attributes are allowed.

Also make sure the musttail diagnostic triggers if a musttail call isn't
actually a tail call.
2021-05-28 11:12:00 +01:00
Yevgeny Rouban
0a4cf978a7 [RS4GC] Introduce intrinsics to get base ptr and offset
There can be a need for some optimizations to get (base, offset)
for any GC pointer. The base can be calculated by generating
needed instructions as it is done by the
RewriteStatepointsForGC::findBasePointer() function. The offset
can be calculated in the same way. Though to not expose the base
calculation and to make the offset calculation as simple as
ptrtoint(derived_ptr) - ptrtoint(base_ptr), which is illegal
outside RS4GC, this patch introduces 2 intrinsics:

 @llvm.experimental.gc.get.pointer.base(%derived_ptr)
 @llvm.experimental.gc.get.pointer.offset(%derived_ptr)

These intrinsics are inlined by RS4GC along with generation of
statepoint sequences.

With these new intrinsics the GC parseable lowering for atomic
memcpy intrinsics (6ec2c5e402a724ba99bce82a9cac7a3006d660f4)
could be implemented as a separate pass.

Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D100445
2021-05-27 09:14:14 +07:00
Marco Elver
b835b9cf36 [SanitizeCoverage] Add support for NoSanitizeCoverage function attribute
We really ought to support no_sanitize("coverage") in line with other
sanitizers. This came up again in discussions on the Linux-kernel
mailing lists, because we currently do workarounds using objtool to
remove coverage instrumentation. Since that support is only on x86, to
continue support coverage instrumentation on other architectures, we
must support selectively disabling coverage instrumentation via function
attributes.

Unfortunately, for SanitizeCoverage, it has not been implemented as a
sanitizer via fsanitize= and associated options in Sanitizers.def, but
rolls its own option fsanitize-coverage. This meant that we never got
"automatic" no_sanitize attribute support.

Implement no_sanitize attribute support by special-casing the string
"coverage" in the NoSanitizeAttr implementation. To keep the feature as
unintrusive to existing IR generation as possible, define a new negative
function attribute NoSanitizeCoverage to propagate the information
through to the instrumentation pass.

Fixes: https://bugs.llvm.org/show_bug.cgi?id=49035

Reviewed By: vitalybuka, morehouse

Differential Revision: https://reviews.llvm.org/D102772
2021-05-25 12:57:14 +02:00
Andy Wingo
107b591be0 [IR][Verifier] Relax restriction on alloca address spaces
In the WebAssembly target, we would like to allow alloca in two address
spaces.  The alloca instruction already has an address space argument,
but the verifier asserts that the address space of an alloca is the
default alloca address space from the datalayout.  This patch removes
this restriction.  Targets that would like to impose additional
restrictions should do so via target-specific verification passes.

Differential Revision: https://reviews.llvm.org/D101045
2021-05-21 11:52:45 +02:00
Ten Tzen
9ff115e8b2 [Windows SEH]: HARDWARE EXCEPTION HANDLING (MSVC -EHa) - Part 1
This patch is the Part-1 (FE Clang) implementation of HW Exception handling.

This new feature adds the support of Hardware Exception for Microsoft Windows
SEH (Structured Exception Handling).
This is the first step of this project; only X86_64 target is enabled in this patch.

Compiler options:
For clang-cl.exe, the option is -EHa, the same as MSVC.
For clang.exe, the extra option is -fasync-exceptions,
plus -triple x86_64-windows -fexceptions and -fcxx-exceptions as usual.

NOTE:: Without the -EHa or -fasync-exceptions, this patch is a NO-DIFF change.

The rules for C code:
For C-code, one way (MSVC approach) to achieve SEH -EHa semantic is to follow
three rules:
* First, no exception can move in or out of _try region., i.e., no "potential
  faulty instruction can be moved across _try boundary.
* Second, the order of exceptions for instructions 'directly' under a _try
  must be preserved (not applied to those in callees).
* Finally, global states (local/global/heap variables) that can be read
  outside of _try region must be updated in memory (not just in register)
  before the subsequent exception occurs.

The impact to C++ code:
Although SEH is a feature for C code, -EHa does have a profound effect on C++
side. When a C++ function (in the same compilation unit with option -EHa ) is
called by a SEH C function, a hardware exception occurs in C++ code can also
be handled properly by an upstream SEH _try-handler or a C++ catch(...).
As such, when that happens in the middle of an object's life scope, the dtor
must be invoked the same way as C++ Synchronous Exception during unwinding
process.

Design:
A natural way to achieve the rules above in LLVM today is to allow an EH edge
added on memory/computation instruction (previous iload/istore idea) so that
exception path is modeled in Flow graph preciously. However, tracking every
single memory instruction and potential faulty instruction can create many
Invokes, complicate flow graph and possibly result in negative performance
impact for downstream optimization and code generation. Making all
optimizations be aware of the new semantic is also substantial.

This design does not intend to model exception path at instruction level.
Instead, the proposed design tracks and reports EH state at BLOCK-level to
reduce the complexity of flow graph and minimize the performance-impact on CPP
code under -EHa option.

One key element of this design is the ability to compute State number at
block-level. Our algorithm is based on the following rationales:

A _try scope is always a SEME (Single Entry Multiple Exits) region as jumping
into a _try is not allowed. The single entry must start with a seh_try_begin()
invoke with a correct State number that is the initial state of the SEME.
Through control-flow, state number is propagated into all blocks. Side exits
marked by seh_try_end() will unwind to parent state based on existing
SEHUnwindMap[].
Note side exits can ONLY jump into parent scopes (lower state number).
Thus, when a block succeeds various states from its predecessors, the lowest
State triumphs others.  If some exits flow to unreachable, propagation on those
paths terminate, not affecting remaining blocks.
For CPP code, object lifetime region is usually a SEME as SEH _try.
However there is one rare exception: jumping into a lifetime that has Dtor but
has no Ctor is warned, but allowed:

Warning: jump bypasses variable with a non-trivial destructor

In that case, the region is actually a MEME (multiple entry multiple exits).
Our solution is to inject a eha_scope_begin() invoke in the side entry block to
ensure a correct State.

Implementation:
Part-1: Clang implementation described below.

Two intrinsic are created to track CPP object scopes; eha_scope_begin() and eha_scope_end().
_scope_begin() is immediately added after ctor() is called and EHStack is pushed.
So it must be an invoke, not a call. With that it's also guaranteed an
EH-cleanup-pad is created regardless whether there exists a call in this scope.
_scope_end is added before dtor(). These two intrinsics make the computation of
Block-State possible in downstream code gen pass, even in the presence of
ctor/dtor inlining.

Two intrinsic, seh_try_begin() and seh_try_end(), are added for C-code to mark
_try boundary and to prevent from exceptions being moved across _try boundary.
All memory instructions inside a _try are considered as 'volatile' to assure
2nd and 3rd rules for C-code above. This is a little sub-optimized. But it's
acceptable as the amount of code directly under _try is very small.

Part-2 (will be in Part-2 patch): LLVM implementation described below.

For both C++ & C-code, the state of each block is computed at the same place in
BE (WinEHPreparing pass) where all other EH tables/maps are calculated.
In addition to _scope_begin & _scope_end, the computation of block state also
rely on the existing State tracking code (UnwindMap and InvokeStateMap).

For both C++ & C-code, the state of each block with potential trap instruction
is marked and reported in DAG Instruction Selection pass, the same place where
the state for -EHsc (synchronous exceptions) is done.
If the first instruction in a reported block scope can trap, a Nop is injected
before this instruction. This nop is needed to accommodate LLVM Windows EH
implementation, in which the address in IPToState table is offset by +1.
(note the purpose of that is to ensure the return address of a call is in the
same scope as the call address.

The handler for catch(...) for -EHa must handle HW exception. So it is
'adjective' flag is reset (it cannot be IsStdDotDot (0x40) that only catches
C++ exceptions).
Suppress push/popTerminate() scope (from noexcept/noTHrow) so that HW
exceptions can be passed through.

Original llvm-dev [RFC] discussions can be found in these two threads below:
https://lists.llvm.org/pipermail/llvm-dev/2020-March/140541.html
https://lists.llvm.org/pipermail/llvm-dev/2020-April/141338.html

Differential Revision: https://reviews.llvm.org/D80344/new/
2021-05-17 22:42:17 -07:00
Alex Zinenko
01e701738c [llvm][doc] fix header for read/write_register intrinsics in LangRef
Mutli-line headers are not allowed in RST, reformat the header to be a
single wide line.
2021-05-17 18:38:16 +02:00
Tim Northover
fc5daa6083 IR/AArch64/X86: add "swifttailcc" calling convention.
Swift's new concurrency features are going to require guaranteed tail calls so
that they don't consume excessive amounts of stack space. This would normally
mean "tailcc", but there are also Swift-specific ABI desires that don't
naturally go along with "tailcc" so this adds another calling convention that's
the combination of "swiftcc" and "tailcc".

Support is added for AArch64 and X86 for now.
2021-05-17 10:48:34 +01:00
Tim Northover
5661b7eb80 IR+AArch64: add a "swiftasync" argument attribute.
This extends any frame record created in the function to include that
parameter, passed in X22.

The new record looks like [X22, FP, LR] in memory, and FP is stored with 0b0001
in bits 63:60 (CodeGen assumes they are 0b0000 in normal operation). The effect
of this is that tools walking the stack should expect to see one of three
values there:

  * 0b0000 => a normal, non-extended record with just [FP, LR]
  * 0b0001 => the extended record [X22, FP, LR]
  * 0b1111 => kernel space, and a non-extended record.

All other values are currently reserved.

If compiling for arm64e this context pointer is address-discriminated with the
discriminator 0xc31a and the DB (process-specific) key.

There is also an "i8** @llvm.swift.async.context.addr()" intrinsic providing
front-ends access to this slot (and forcing its creation initialized to nullptr
if necessary).
2021-05-14 11:43:58 +01:00
Arthur Eubanks
1b32fba3b3 [IR] Introduce the opaque pointer type
The opaque pointer type is essentially just a normal pointer type with a
null pointee type.

This also adds support for the opaque pointer type to the bitcode
reader/writer, as well as to textual IR.

To avoid confusion with existing pointer types, we disallow creating a
pointer to an opaque pointer.

Opaque pointer types should not be widely used at this point since many
parts of LLVM still do not support them. The next steps are to add some
very simple use cases of opaque pointers to make sure they work, then
start pretending that all pointers are opaque pointers and see what
breaks.

https://lists.llvm.org/pipermail/llvm-dev/2021-May/150359.html

Reviewed By: dblaikie, dexonsmith, pcc

Differential Revision: https://reviews.llvm.org/D101704
2021-05-13 15:22:27 -07:00
Fraser Cormack
8994b24c78 [LangRef][VP] Fix typos in VP sdiv/udiv examples 2021-05-06 16:37:18 +01:00
Fraser Cormack
1c9a07e9b0 [LangRef] Fix a typo in the vector-type memory layout section 2021-05-04 15:40:53 +01:00
Thomas Preud'homme
71007d77ca [doc] Clarify constrained fcmps behavior
Reviewed By: uweigand

Differential Revision: https://reviews.llvm.org/D101053
2021-04-23 11:55:20 +01:00
Fangrui Song
c83fe04e08 [IR][sanitizer] Add module flag "frame-pointer" and set it for cc1 -mframe-pointer={non-leaf,all}
The Linux kernel objtool diagnostic `call without frame pointer save/setup`
arise in multiple instrumentation passes (asan/tsan/gcov). With the mechanism
introduced in D100251, it's trivial to respect the command line
-m[no-]omit-leaf-frame-pointer/-f[no-]omit-frame-pointer, so let's do it.

Fix: https://github.com/ClangBuiltLinux/linux/issues/1236 (tsan)
Fix: https://github.com/ClangBuiltLinux/linux/issues/1238 (asan)

Also document the function attribute "frame-pointer" which is long overdue.

Differential Revision: https://reviews.llvm.org/D101016
2021-04-22 18:07:30 -07:00
Evgeniy Brevnov
d5e146fe48 Wordsmith the semantics of invariant.load
Don't phrase the semantics in terms of the optimizer.  Instead have a
more straightforward execution based semantic.

Reviewed By: ebrevnov

Differential Revision: https://reviews.llvm.org/D63439
2021-04-22 10:06:13 +07:00
David Sherwood
1ea67899d6 [Docs] Fix formatting issue for llvm.experimental.stepvector in LangRef
The llvm.experimental.stepvector section was missing the '^^^' line
underneath the intrinsic name.
2021-04-21 08:42:40 +01:00
Luo, Yuanke
c35d11aa02 [X86][AMX] Add description of x86_amx to LangRef.
Differential Revision: https://reviews.llvm.org/D100032
2021-04-20 14:29:17 +08:00
Philip Reames
d5252f4ce6 [nofree] Restrict semantics to memory visible to caller
This patch clarifies the semantics of the nofree function attribute to make clear that it provides an "as if" semantic. That is, a nofree function is guaranteed not to free memory which existed before the call, but might allocate and then deallocate that same memory within the lifetime of the callee.

This is the result of the discussion on llvm-dev under the thread "Ambiguity in the nofree function attribute".

The most important part of this change is the LangRef wording. The rest is minor comment changes to emphasize the new semantics where code was accidentally consistent, and fix one place which wasn't consistent. That one place is currently narrowly used as it is primarily part of the ongoing (and not yet enabled) deref-at-point semantics work.

Differential Revision: https://reviews.llvm.org/D100141
2021-04-16 11:38:55 -07:00
Juneyoung Lee
bc62ce57fa [LangRef] formatting 2021-04-16 10:41:30 +09:00
Juneyoung Lee
2f6006376d [LangRef] fix unexepcted unindent errror 2021-04-16 09:58:55 +09:00
Juneyoung Lee
4fba55a0b5 [LangRef] clarify the semantics of nocapture
This patch clarifies the semantics of nocapture attribute.

A 'Pointer Capture' subsection is added to describe the semantics of pointer capture first.

For the nocapture example with two same pointer arguments, it is consistent with the semantics that Alive2 used to run lit tests.

Reviewed By: nlopes

Differential Revision: https://reviews.llvm.org/D97924
2021-04-16 09:48:42 +09:00
Momchil Velikov
d98e321d12 [clang][AArch64] Correctly align HFA arguments when passed on the stack
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example

    struct S {
      __attribute__ ((__aligned__(16))) double v[4];
    };

Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)

Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.

This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.

The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.

For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.

On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.

Patch by Momchil Velikov and Lucas Prates.

Differential Revision: https://reviews.llvm.org/D98794
2021-04-15 22:58:14 +01:00
Sushma Unnibhavi
2e031186a6 Missing syntax highlighting for LLVM IR in Langref
Added syntax highlighting

Differential Revision: https://reviews.llvm.org/D100125
2021-04-11 12:19:58 +05:30