This is a followup to 1ccfb52a61748, which made a number of changes
including the apparently innocuous reordering of required passes in
MemCpyOptimizer. This however altered the creation order of BasicAA vs
Phi Values analysis, meaning BasicAA did not pick up PhiValues as a
cached result. Instead if we require MemoryDependence first it will
require PhiValuesAnalysis allowing BasicAA to use it for better results.
I don't claim this is an excellent design, but it fixes a nasty little
regressions where a query later in JumpThreading was getting worse
results.
Differential Revision: https://reviews.llvm.org/D87027
Previous implementations for the TLS models General Dynamic and Initial Exec
were missing the ELF::STT_TLS type on symbols that required the type. This patch
adds the type.
Reviewed By: sfertile, MaskRay
Differential Revision: https://reviews.llvm.org/D86777
Instead of referring to stack sizes sections only by name, we can add
section indexes and types to warnings reported.
Differential revision: https://reviews.llvm.org/D86934
Currently IPSCCP (and others like CVP/GVN) blindly propagate pointer
equalities. In certain cases, that leads to dereferenceable pointers
being replaced, as in the example test case.
I think this is not allowed, as it introduces an access of an
un-dereferenceable pointer. Note that the pointer is inbounds, but one
past the last element, so it is valid, but not dereferenceable.
This patch is mostly to highlight the issue and start a discussion.
Currently it only checks for specifically looking
one-past-the-last-element pointers with array typed bases.
This causes the mis-compile outlined in
https://stackoverflow.com/questions/55754313/is-this-gcc-clang-past-one-pointer-comparison-behavior-conforming-or-non-standar
In the test case, if we replace %p with the GEP for the store, we
subsequently determine that the store and the load cannot alias, because
they are to different underlying objects.
Note that Alive2 seems to think that the replacement is valid:
https://alive2.llvm.org/ce/z/2rorhk
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85332
We have 2 DumpStyles currently:
`class GNUStyle : public DumpStyle<ELFT>` and `class LLVMStyle : public DumpStyle<ELFT>`.
The problem of `DumpStyle` interface is that almost for each method
we provide `const ELFFile<ELFT> *` as argument. But in fact each of
dump styles keeps `ELFDumper<ELFT> *Dumper` which can be used to get an object from.
But since we use the `Obj` too often, I've decided to introduce a one more reference member
instead of reading it from the `Dumper` each time:
`const ELFFile<ELFT> &Obj;` This is kind of similar to `FileName` member which we have already:
it is also used to store a the file name which can be read from `Dumper->getElfObject()->getFileName()`.
I had to adjust the code which previously worked with a pointer to an object
and now works with a reference.
In a follow-up I am going to try to get rid of `const ELFObjectFile<ELFT>` arguments
which are still passed to a set of functions.
Differential revision: https://reviews.llvm.org/D87040
Add support in llvm-readobj for displaying them and support in the
asm parsser, AArch64TargetStreamer and MCWin64EH for emitting them.
The directives for the remaining basic opcodes have names that
match the opcode in the documentation.
The directives for custom stack cases, that are named
MSFT_OP_TRAP_FRAME, MSFT_OP_MACHINE_FRAME, MSFT_OP_CONTEXT
and MSFT_OP_CLEAR_UNWOUND_TO_CALL, are given matching assembler
directive names that fit into the rest of the opcode naming;
.seh_trap_frame, .seh_context, .seh_clear_unwound_to_call
The opcode MSFT_OP_MACHINE_FRAME is mapped to the existing
opecode enum UOP_PushMachFrame that is used on x86_64, and also
uses the corresponding existing x86_64 directive name
.seh_pushframe.
Differential Revision: https://reviews.llvm.org/D86889
Commit 3a29393b4709d15069130119cf1d136af4a92d77 removes the cmath/math.h
includes from the DataTypes.h header to speed up parsing. However the
DataTypes.h header was using this header to get the macro `HUGE_VAL` for its own
`HUGE_VALF` macro definition. Now the macro instead just expands into a plain
`HUGE_VAL` token which leads to compiler errors unless `math.h` was previously
included by the including source file. It also leads to compiler warnings with
enabled module builds which point out this inconsistency.
The correct way to fix this seems to be to just remove HUGE_VALF from the
header. llvm-c is not referencing that macro from what I can see and users
probably should just include the math headers if they need it (or define it on
their own for really old C versions).
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D83761
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
This also changes -lint from an analysis to a pass. It's similar to
-verify, and that is a normal pass, and lives in llvm/IR.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D87057
This helps SelectionDAGBuilder recognize the splat can be used as a uniform base.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D86371
When llvm-dwarfdump encounters no null terminated strings, we should
warn user about it rather than ignore it and print nothing.
Before this patch, when llvm-dwarfdump dumps a .debug_str section whose
content is "abc", it prints:
```
.debug_str contents:
```
After this patch:
```
.debug_str contents:
warning: no null terminated string at offset 0x0
```
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D86998
The test case in https://bugs.llvm.org/show_bug.cgi?id=47373 exposed
two bugs in the PPC back end. The first one was fixed in commit
27714075848e7f05a297317ad28ad2570d8e5a43 but the test case had to
be added without -verify-machineinstrs due to the second bug.
This commit fixes the use-after-kill that is left behind by the
PPC MI peephole optimization.
First, shuffle cost for scalable type is not known for scalable type;
Second, we cannot reason if the narrowed shuffle mask for scalable type
is a splat or not.
E.g., Bitcast splat vector from type <vscale x 4 x i32> to <vscale x 8 x i16>
will involve narrowing shuffle mask <vscale x 4 x i32> zeroinitializer to
<vscale x 8 x i32> with element sequence of <0, 1, 0, 1, ...>, which cannot be
reasoned if it's a valid splat or not.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86995
This patch changes errors in `SmallVector::grow` that are independent of
memory capacity to be reported using report_fatal_error or
std::length_error instead of report_bad_alloc_error, which falsely signals
an OOM.
It also cleans up a few related things:
- makes report_bad_alloc_error to print the failure reason passed
to it.
- fixes the documentation to indicate that report_bad_alloc_error
calls `abort()` not "an assertion"
- uses a consistent name for the size/capacity argument to `grow`
and `grow_pod`
Reviewed By: mehdi_amini, MaskRay
Differential Revision: https://reviews.llvm.org/D86892
For ThinLTO importing we don't need to import all the fields of the DICompileUnit, such as enums, macros, retained types lists. The importation of those fields were previously disabled by setting their value map entries to nullptr. Unfortunately a metadata node can be shared by multiple metadata operands. Setting the map entry to nullptr might result in not importing other metadata unexpectedly. The issue is fixed by explicitly setting the original DICompileUnit fields (still a copy of the source module metadata) to null.
Reviewed By: wenlei, dblaikie
Differential Revision: https://reviews.llvm.org/D86675
Quite a while ago, we legalized these nodes as we added custom
handling for reciprocal estimates in the back end. We have since
moved to target-independent combines but neglected to turn off
legalization. As a result, we can now get selection failures on
non-VSX subtargets as evidenced in the listed PR.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=47373
This patch implements the builtins for Vector Multiply Builtins (vmulxxd family of instructions), and adds the appropriate test cases for these builtins. The builtins utilize the vector multiply instructions itnroduced with ISA 3.1.
Differential Revision: https://reviews.llvm.org/D83955
The cmake build uses COMPILER_RT_TARGET_HAS_* in the CMakeLists.txt
but then translates it to -DCOMPILER_RT_HAS_* flags which the
c++ code checks for. So we need to define the latter, not the former.
Summary of changes:
- Changed parser to eliminate generation of excessive error messages;
- Corrected lit tests to match all expected error messages;
- Corrected lit tests to guard against unwanted extra messages (added option "--implicit-check-not=error:");
- Added missing checks and fixed some typos in tests.
See bug 46907: https://bugs.llvm.org/show_bug.cgi?id=46907
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D86940
Add support for line continuations (the "backslash operator") in MASM by modifying the Parser's Lex method.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D83347
If the PSHUFBs have no other uses, then we can force the unselected elements to zero to OR them instead, avoiding both an extra mask load and a costly variable blend.
Eventually we should try to bring this into shuffle combining, once we can more easily convert between shuffles + select patterns.
In IPSCCP when a function is optimized to return undef, it should clear the returned attribute for all its input arguments
and its corresponding call sites.
The bug is exposed when the value of an input argument of the function is assigned to a physical register and
because of the argument having a returned attribute, the value of this physical register will continue to be used
as the function return value right after the call instruction returns, even if the value that this register holds may
be clobbered during the function call. This potentially results in incorrect values being used afterwards.
Reviewed By: jdoerfert, fhahn
Differential Revision: https://reviews.llvm.org/D84220
After computing dependence, we check if it is safe to hoist by
identifying if it clobbers any liveIns in the sibling block (NullSucc).
This check is moved to its own function which will be used in the
soon-to-be modified dependence checking algorithm for implicit null
checks pass.
Tests-Run: lit tests on X86/implicit-*
Separated out some checks in isSuitableMemoryOp and added comments
explaining why some of those checks are done.
Tests-Run:X86 implicit null checks tests.
When marking a global variable constant, and simplifying users using
CleanupConstantGlobalUsers(), the pass could incorrectly return false if
there were still some uses left, and no further optimizations was done.
This was caught using the check introduced by D80916.
This fixes PR46749.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D85837
These transforms will now be performed irrespective of the number of uses for the expression "1.0/sqrt(X)":
1.0/sqrt(X) * X => X/sqrt(X)
X * 1.0/sqrt(X) => X/sqrt(X)
We already handle more general cases, and we are intentionally not creating extra (and likely expensive)
fdiv ops in IR. This pattern is the exception to the rule because we always expect the Backend to reduce
X/sqrt(X) to sqrt(X), if it has the necessary (reassoc) fast-math-flags.
Ref: DagCombiner optimizes the X/sqrt(X) to sqrt(X).
Differential Revision: https://reviews.llvm.org/D86726
This is an enhancement to D81766 to allow loading the minimum target
vector type into an IR vector with a different number of elements.
In one of the motivating tests from PR16739, SLP creates <2 x float>
load ops mixed with <4 x float> insert ops, so we want to handle that
pattern in addition to potential oversized vectors created by the
vectorizers.
For now, we are assuming the insert/extract subvector with undef is
free because there is no exact corresponding TTI modeling for that.
Differential Revision: https://reviews.llvm.org/D86160
When lowering fixed length vector operations for SVE the subvector
operations are used extensively to marshall data between scalable
and fixed-length vectors. This means that sequences like:
extract_subvec(binop(insert_subvec(a), insert_subvec(b)))
are very common. DAGCombine only checks if the resulting binop is
legal or can be custom lowered when undoing such sequences. When
it's custom lowering that is introducing them the result is an
infinite legalise->combine->legalise loop.
This patch extends the isOperationLegalOr... functions to include
a "LegalOnly" parameter to restrict the check to legal operations
only. Although isOperationLegal could be used it's common for
the affected code paths to be visited pre and post legalisation,
so the extra parameter keeps the code tidy.
Differential Revision: https://reviews.llvm.org/D86450
The addend in a REL32 reloc needs to be adjusted to account for the
offset from the PC value returned by the s_getpc instruction to the
point where the reloc is applied. This was being done correctly for
(GOTPC)REL32_LO but not for (GOTPC)REL32_HI. This will only make a
difference if the target symbol happens to get loaded almost exactly
a multiple of 4G away from the relocated instructions.
Differential Revision: https://reviews.llvm.org/D86938
Unwinders may only preserve the lower 64bits of Neon and SVE registers,
as only the registers in the base ABI are guaranteed to be preserved
over the exception edge. The caller will need to preserve additional
registers for when the call throws an exception and the unwinder has
tried to recover state.
For e.g.
svint32_t bar(svint32_t);
svint32_t foo(svint32_t x, bool *err) {
try { bar(x); } catch (...) { *err = true; }
return x;
}
`z0` needs to be spilled before the call to `bar(x)` and reloaded before
returning from foo, as the exception handler may have clobbered z0.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84737
As stated in section 6.1.1.2, DWARFv5, p. 142,
| The last entry for each name is followed by a zero byte that
| terminates the list. There may be gaps between the lists.
The patch changes emitting a 4-byte zero value to a 1-byte one, which
effectively removes the gap between entry lists, and thus saves
approximately 3 bytes per name; the calculation is not exact because
the total size of the table is aligned to 4.
Differential Revision: https://reviews.llvm.org/D86927
The member is not in use; the unit length for the table is emitted as
a difference between two labels. Moreover, the type of the member might
be misleading, because for DWARF64 the field should be 64 bit long.
Differential Revision: https://reviews.llvm.org/D86912
This patch uses partial DemandedElts masks to further simplify target shuffle chains and finally starts making target shuffle combining part of SimplifyDemandedBits/SimplifyDemandedVectorElts.
We already manage this for Depth == 0 cases, where combineX86ShuffleChain would early-out if the shuffle combined to the same op, but the patch generalizes this by manipulating the depth handling of combineX86ShufflesRecursively - calling with a new Depth = 0 and reducing the maximum shuffle combine depth accordingly.
Differential Revision: https://reviews.llvm.org/D66004
This patch makes it possible for AAUB to use information from AANoUndef.
This is the next patch of D86983
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86984
When the associated value is undef, we immediately forced to indicate a pessimistic fixpoint so far.
This patch changes the initialization to check the attribute given in IR at first and to indicate an optimistic fixpoint when it is given.
This change will enable us to catch , for example, the following case in AAUB.
```
call void @foo(i32 noundef undef)
```
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86983
Before upstream a new target called CSKY, make a new triple of that called Triple::csky.
For now, it's a 32-bit little endian target and the detail can be referred at D86269.
This is the split part of D86269, which add a new target called CSKY.
Differential Revision: https://reviews.llvm.org/D86505
In GNU ld, gold and LLD, --no-allow-shlib-undefined is the default when
linking an executable. The option disallows unresolved symbols in shared objects.
(gold and LLD catch fewer cases than GNU ld. See D57385 for details)
See D57569 why it is bad idea to use --allow-shlib-undefined for executables [a].
GNU ld traditionally copied DT_NEEDED entries transitively. This was
deemed not good, so GNU ld 2.22 defaulted to --no-copy-dt-needed-entries.
gold and LLD always behave like --no-copy-dt-needed-entries.
rL221530 added -Wl,-allow-shlib-undefined to make some old releases of GNU ld's
--no-copy-dt-needed-entries to actually work.
Due to [a] and [b], this patch drops -Wl,-allow-shlib-undefined.
[b]: In a -DBUILD_SHARED_LIBS=on build, `--as-needed --allow-shlib-undefined`
can unexpectedly suppress some .dynsym entries. The issue can cause
mlir-cpu-runner to fail at runtime. Note, on Debian, gcc newer than (gcc-9-20190125-2) enable
--as-needed by default.
See https://sourceware.org/bugzilla/show_bug.cgi?id=26551 for a reduced example.
Reviewed By: mehdi_amini, echristo
Differential Revision: https://reviews.llvm.org/D86839