1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00
Commit Graph

17 Commits

Author SHA1 Message Date
Sanjoy Das
fd03ccdaff [SCEV] Mark AddExprs as nsw or nuw if legal
Summary:
This uses `ScalarEvolution::getRange` and not potentially control
dependent `nsw` and `nuw` bits on the arithmetic instruction.

Reviewers: atrick, hfinkel, nlewycky

Subscribers: llvm-commits, sanjoy

Differential Revision: http://reviews.llvm.org/D13613

llvm-svn: 251048
2015-10-22 19:57:19 +00:00
Tobias Grosser
de0082bcae SCEV: Allow simple AddRec * Parameter products in delinearization
This patch also allows the -delinearize pass to delinearize expressions that do
not have an outermost SCEVAddRec expression. The SCEV::delinearize
infrastructure allowed this since r240952, but the -delinearize pass was not
updated yet.

llvm-svn: 250018
2015-10-12 08:02:00 +00:00
Bjarke Hammersholt Roune
c5853844e0 [SCEV] Apply NSW and NUW flags via poison value analysis for sub, mul and shl
Summary:
http://reviews.llvm.org/D11212 made Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs for add instructions. This patch expands that to sub, mul and shl instructions.

This change makes LSR able to generate pointer induction variables for loops like these, where the index is 32 bit and the pointer is 64 bit:

  for (int i = 0; i < numIterations; ++i)
    sum += ptr[i - offset];

  for (int i = 0; i < numIterations; ++i)
    sum += ptr[i * stride];

  for (int i = 0; i < numIterations; ++i)
    sum += ptr[3 * (i << 7)];


Reviewers: atrick, sanjoy

Subscribers: sanjoy, majnemer, hfinkel, llvm-commits, meheff, jingyue, eliben

Differential Revision: http://reviews.llvm.org/D11860

llvm-svn: 245118
2015-08-14 22:45:26 +00:00
Jingyue Wu
a6a8a2d2b1 [SCEV] Apply NSW and NUW flags via poison value analysis
Summary:
Make Scalar Evolution able to propagate NSW and NUW flags from instructions to SCEVs in some cases. This is based on reasoning about when poison from instructions with these flags would trigger undefined behavior. This gives a 13% speed-up on some Eigen3-based Google-internal microbenchmarks for NVPTX.

There does not seem to be clear agreement about when poison should be considered to propagate through instructions. In this analysis, poison propagates only in cases where that should be uncontroversial.

This change makes LSR able to create induction variables for expressions like &ptr[i + offset] for loops like this:

  for (int i = 0; i < limit; ++i) {
    sum += ptr[i + offset];
  }

Here ptr is a 64 bit pointer and offset is a 32 bit integer. For NVPTX, LSR currently creates an induction variable for i + offset instead, which is not as fast. Improving this situation is what brings the 13% speed-up on some Eigen3-based Google-internal microbenchmarks for NVPTX.


There are more details in this discussion on llvmdev.
June: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-June/thread.html#87234
July: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-July/thread.html#87392

Patch by Bjarke Roune

Reviewers: eliben, atrick, sanjoy

Subscribers: majnemer, hfinkel, jingyue, meheff, llvm-commits

Differential Revision: http://reviews.llvm.org/D11212

llvm-svn: 243460
2015-07-28 18:22:40 +00:00
Brendon Cahoon
11d07abfa7 Fix a type mismatch assert in SCEV division
An assert was triggered when attempting to create a new SCEV
with operands of different types in the visitAddRecExpr. In this
test case, the operand types of the numerator and denominator
are different. The SCEV division code should generate a
conservative answer when this happens.

Differential Revision: http://reviews.llvm.org/D9021

llvm-svn: 235511
2015-04-22 15:06:40 +00:00
Brendon Cahoon
70912563c0 Recognize n/1 in the SCEV divide function
n/1 generates a quotient equal to n and a remainder of 0.
If this case is not recognized, then the SCEV divide() function
can return a remainder that is greater than or equal to the
denominator, which means the delinearized subscripts for the
test case will be incorrect.

Differential Revision: http://reviews.llvm.org/D9003

llvm-svn: 235311
2015-04-20 16:03:28 +00:00
Mehdi Amini
29ebc2d39f Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
David Blaikie
ab043ff680 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie
0d99339102 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Tobias Grosser
e914a50dc9 ScalarEvolution: Derive element size from the type of the loaded element
Before, we where looking at the size of the pointer type that specifies the
location from which to load the element. This did not make any sense at all.

This change fixes a bug in the delinearization where we failed to delinerize
certain load instructions.

llvm-svn: 210435
2014-06-08 19:21:20 +00:00
Sebastian Pop
1664c3c2ec remove constant terms
The delinearization is needed only to remove the non linearity induced by
expressions involving multiplications of parameters and induction variables.
There is no problem in dealing with constant times parameters, or constant times
an induction variable.

For this reason, the current patch discards all constant terms and multipliers
before running the delinearization algorithm on the terms. The only thing
remaining in the term expressions are parameters and multiply expressions of
parameters: these simplified term expressions are passed to the array shape
recognizer that will not recognize constant dimensions anymore: these will be
recognized as different strides in parametric subscripts.

The only important special case of a constant dimension is the size of elements.
Instead of relying on the delinearization to infer the size of an element,
compute the element size from the base address type. This is a much more precise
way of computing the element size than before, as we would have mixed together
the size of an element with the strides of the innermost dimension.

llvm-svn: 209691
2014-05-27 22:41:45 +00:00
Adam Nemet
da33b30d8c [Test] Trim unnecessary .c and .cpp from config.suffix in lit.local.cfg
Tested by comparing make check VERBOSE=1 before and after to make sure
no tests are missed.  (VERBOSE=1 prints the list of tests.)

Only one test :( remains where .cpp is required:

tools/llvm-cov/range_based_for.cpp:// RUN: llvm-cov range_based_for.cpp | FileCheck %s --check-prefix=STDOUT

The topic was discussed in this thread:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140428/214905.html

llvm-svn: 208621
2014-05-12 19:57:31 +00:00
Sebastian Pop
de2f65cfdd do not assert when delinearization fails
llvm-svn: 208615
2014-05-12 19:01:53 +00:00
Sebastian Pop
739ca9316a add testcase for r208237: do not collect undef terms
llvm-svn: 208347
2014-05-08 18:38:58 +00:00
Sebastian Pop
d5cb815565 split delinearization pass in 3 steps
To compute the dimensions of the array in a unique way, we split the
delinearization analysis in three steps:

- find parametric terms in all memory access functions
- compute the array dimensions from the set of terms
- compute the delinearized access functions for each dimension

The first step is executed on all the memory access functions such that we
gather all the patterns in which an array is accessed. The second step reduces
all this information in a unique description of the sizes of the array. The
third step is delinearizing each memory access function following the common
description of the shape of the array computed in step 2.

This rewrite of the delinearization pass also solves a problem we had with the
previous implementation: because the previous algorithm was by induction on the
structure of the SCEV, it would not correctly recognize the shape of the array
when the memory access was not following the nesting of the loops: for example,
see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll

; void foo(long n, long m, long o, double A[n][m][o]) {
;
;   for (long i = 0; i < n; i++)
;     for (long j = 0; j < m; j++)
;       for (long k = 0; k < o; k++)
;         A[i][k][j] = 1.0;

Starting with this patch we no longer delinearize access functions that do not
contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll

;;  for (long int i = 0; i < 100; i++)
;;    for (long int j = 0; j < 100; j++) {
;;      A[2*i - 4*j] = i;
;;      *B++ = A[6*i + 8*j];

these accesses will not be delinearized as the upper bound of the loops are
constants, and their access functions do not contain SCEVUnknown parameters.

llvm-svn: 208232
2014-05-07 18:01:20 +00:00
Sebastian Pop
2aac9574e3 in findGCD of multiply expr return the gcd
we used to return 1 instead of the gcd

llvm-svn: 205800
2014-04-08 21:21:05 +00:00
Sebastian Pop
c8eb6dbd80 delinearization of arrays
llvm-svn: 194527
2013-11-12 22:47:20 +00:00