The approach is simple: if a pass reports that it's not modifying a
Function/Module, compute a loose hash of that Function/Module and compare it
with the original one. If we report no change but there's a hash change, then we
have an error.
This approach misses a lot of change but it's not super intrusive and can
detect most of the simple mistakes.
Differential Revision: https://reviews.llvm.org/D80916
The approach is simple: if a pass reports that it's not modifying a
Function/Module, compute a loose hash of that Function/Module and compare it
with the original one. If we report no change but there's a hash change, then we
have an error.
This approach misses a lot of change but it's not super intrusive and can
detect most of the simple mistakes.
Differential Revision: https://reviews.llvm.org/D80916
Summary:
Make Constant::getSplatValue recognize scalable vector splats of the
form created by ConstantVector::getSplat. Add unit test to verify that
C == ConstantVector::getSplat(C)->getSplatValue() for fixed width and
scalable vector splats
Reviewers: efriedma, spatel, fpetrogalli, c-rhodes
Reviewed By: efriedma
Subscribers: sdesmalen, tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82416
Summary:
Avoid exposing details about how roots are stored. This enables subsequent
type-erasure changes.
v5:
- cleanup a unit test by using EXPECT_EQ instead of EXPECT_TRUE
Change-Id: I532b774cc71f2224e543bc7d79131d97f63f093d
Reviewers: arsenm, RKSimon, mehdi_amini, courbet
Subscribers: jvesely, wdng, hiraditya, kuhar, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83085
Summary:
D80831 changed part of the prefix usage for AIX.
But there are other places getting prefix from DataLayout.
This patch intends to make prefix usage consistent on AIX.
Reviewed by: hubert.reinterpretcast, daltenty
Differential Revision: https://reviews.llvm.org/D81270
Currently, there doesn't seem to be any way to look up a Value*
in a map/set indexed by AssertingVH/PoisoningVH, without creating
a value handle -- which is fairly expensive, because it involves
adding the value handle to the use list and immediately removing
it again. Using find_as(Value *) does not work (and is in fact
worse than just using find(Value *)), because it will end up
creating multiple value handles during the lookup itself.
For AssertingVH, address this by simply using DenseMapInfo<T *>
instead of manually implementing something. The AssertingVH<T>
will now get coerced to T*, rather than the other way around.
For PoisoningVH, add extra overloads of getHashValue() and
isEqual() that accept a T* argument.
This allows using find_as(Value *) to perform efficient lookups
in assertion-enabled builds.
Differential Revision: https://reviews.llvm.org/D81793
This patch fixes VPIntrinsic::canIgnoreVectorLength when used on a
VPIntrinsic with scalable vector types. Also includes new unittest cases
for the '<vscale x 1 x whatever>' and '%evl == vscale' corner cases.
Summary:
The working set size heuristics (ProfileSummaryInfo::hasHugeWorkingSetSize)
under the partial sample PGO may not be accurate because the profile is partial
and the number of hot profile counters in the ProfileSummary may not reflect the
actual working set size of the program being compiled.
To improve this, the (approximated) ratio of the the number of profile counters
of the program being compiled to the number of profile counters in the partial
sample profile is computed (which is called the partial profile ratio) and the
working set size of the profile is scaled by this ratio to reflect the working
set size of the program being compiled and used for the working set size
heuristics.
The partial profile ratio is approximated based on the number of the basic
blocks in the program and the NumCounts field in the ProfileSummary and computed
through the thin LTO indexing. This means that there is the limitation that the
scaled working set size is available to the thin LTO post link passes only.
Reviewers: davidxl
Subscribers: mgorny, eraman, hiraditya, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79831
This patch upgrades DISubrange to support fortran requirements.
Summary:
Below are the updates/addition of fields.
lowerBound - Now accepts signed integer or DIVariable or DIExpression,
earlier it accepted only signed integer.
upperBound - This field is now added and accepts signed interger or
DIVariable or DIExpression.
stride - This field is now added and accepts signed interger or
DIVariable or DIExpression.
This is required to describe bounds of array which are known at runtime.
Testing:
unit test cases added (hand-written)
check clang
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D80197
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
Summary:
Replace any extant metadata uses of a dying instruction with undef to
preserve debug info accuracy. Some alternatives include:
- Treat Instruction like any other Value, and point its extant metadata
uses to an empty ValueAsMetadata node. This makes extant dbg.value uses
trivially dead (i.e. fair game for deletion in many passes), leading to
stale dbg.values being in effect for too long.
- Call salvageDebugInfoOrMarkUndef. Not needed to make instruction removal
correct. OTOH results in wasted work in some common cases (e.g. when all
instructions in a BasicBlock are deleted).
This came up while discussing some basic cases in
https://reviews.llvm.org/D80052.
Reviewers: jmorse, TWeaver, aprantl, dexonsmith, jdoerfert
Subscribers: jholewinski, qcolombet, hiraditya, jfb, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80264
Summary:
Module::setProfileSummary currently calls addModuelFlag. This prevents from
updating the ProfileSummary metadata in the module and results in a second
ProfileSummary added instead of replacing an existing one. I don't think this is
the expected behavior. It prevents updating the ProfileSummary and it does not
make sense to have more than one. To address this, add Module::setModuleFlag and
use it from setProfileSummary.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79902
If we don't know anything about the alignment of a pointer, Align(1) is
still correct: all pointers are at least 1-byte aligned.
Included in this patch is a bugfix for an issue discovered during this
cleanup: pointers with "dereferenceable" attributes/metadata were
assumed to be aligned according to the type of the pointer. This
wasn't intentional, as far as I can tell, so Loads.cpp was fixed to
stop making this assumption. Frontends may need to be updated. I
updated clang's handling of C++ references, and added a release note for
this.
Differential Revision: https://reviews.llvm.org/D80072
This patch adds support for DWARF attribute DW_AT_data_location.
Summary:
Dynamic arrays in fortran are described by array descriptor and
data allocation address. Former is mapped to DW_AT_location and
later is mapped to DW_AT_data_location.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79592
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.
Reviewers: chandlerc
Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72893
This patch extends DIModule Debug metadata in LLVM to support
Fortran modules. DIModule is extended to contain File and Line
fields, these fields will be used by Flang FE to create debug
information necessary for representing Fortran modules at IR level.
Furthermore DW_TAG_module is also extended to contain these fields.
If these fields are missing, debuggers like GDB won't be able to
show Fortran modules information correctly.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79484
Summary:
Have stripNonLineTableDebugInfo() attach updated !llvm.loop metadata to
an instruction (instead of updating and then discarding the metadata).
This fixes "!dbg attachment points at wrong subprogram for function"
errors seen while archiving an iOS app.
It would be nice -- as a follow-up -- to catch this issue earlier,
perhaps by modifying the verifier to constrain where DILocations are
allowed. Any alternative suggestions appreciated.
rdar://61982466
Reviewers: aprantl, dsanders
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79200
This patch changes the FP conversion intrinsics to take a predicate
that matches the number of lanes for the vector with the widest element
type as opposed to using <vscale x 16 x i1>.
For example:
```<vscale x 4 x float> @llvm.aarch64.sve.fcvt.f32f16(<vscale x 4 x float>, <vscale x 4 x i1>, <vscale x 8 x half>)```
now uses <vscale x 4 x i1> instead of <vscale x 16 x i1>
And similar for:
```<vscale x 4 x float> @llvm.aarch64.sve.fcvt.f32f64(<vscale x 4 x float>, <vscale x 2 x i1>, <vscale x 2 x double>)```
where the predicate now matches the wider type, so <vscale x 2 x i1>.
Reviewers: efriedma, SjoerdMeijer, paulwalker-arm, rengolin
Reviewed By: efriedma
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78402
Summary:
Remove asserting vector getters from Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: dexonsmith, sdesmalen, efriedma
Reviewed By: efriedma
Subscribers: cfe-commits, hiraditya, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D77278
Summary:
We can and should remove deleted nodes from their respective SCCs. We
did not do this before and this was a potential problem even though I
couldn't locally trigger an issue. Since the `DeleteNode` would assert
if the node was not in the SCC, we know we only remove nodes from their
SCC and only once (when run on all the Attributor tests).
Reviewers: lebedev.ri, hfinkel, fhahn, probinson, wristow, loladiro, sstefan1, uenoku
Subscribers: hiraditya, bollu, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77855
Summary:
While it is uncommon that the ExternalCallingNode needs to be updated,
it can happen. It is uncommon because most functions listed as callees
have external linkage, modifying them is usually not allowed. That said,
there are also internal functions that have, or better had, their
"address taken" at construction time. We conservatively assume various
uses cause the address "to be taken". Furthermore, the user might have
become dead at some point. As a consequence, transformations, e.g., the
Attributor, might be able to replace a function that is listed
as callee of the ExternalCallingNode.
Since there is no function corresponding to the ExternalCallingNode, we
did just remove the node from the callee list if we replaced it (so
far). Now it would be preferable to replace it if needed and remove it
otherwise. However, removing the node has implications on the CGSCC
iteration. Locally, that caused some other nodes to be never visited
but it is for sure possible other (bad) side effects can occur. As it
seems conservatively safe to keep the new node in the callee list we
will do that for now.
Reviewers: lebedev.ri, hfinkel, fhahn, probinson, wristow, loladiro, sstefan1, uenoku
Subscribers: hiraditya, bollu, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77854
Summary:
The old code did eliminate references from and to functions that were
about to be deleted only just before we deleted them. This can cause
references from other functions that are supposed to be deleted to still
exist, depending on the order. If the functions form a strongly
connected component the problem manifests regardless of the order in
which we try to actually delete the functions.
This patch introduces a two step deletion. First we remove all
references and then we delete the function. Note that this only affects
the old call graph. There should not be any functional changes if no old
style call graph was given.
To test this we delete two strongly connected functions instead of one
in an existing test.
Reviewers: hfinkel
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77975
Now compiler defines 5 sets of constants to represent rounding mode.
These are:
1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes
defined by IEEE-754 and is used in `APFloat` implementation.
2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754
rounding modes and a special value for dynamic rounding mode. It is used
in clang frontend.
3. `llvm::fp::RoundingMode`. Defines the same values as
`clang::LangOptions::FPRoundingModeKind` but in different order. It is
used to specify rounding mode in in IR and functions that operate IR.
4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7).
Besides constants for rounding mode it also uses a special value to
indicate error. It is convenient to use in intrinsic functions, as it
represents platform-independent representation for rounding mode. In this
role it is used in some pending patches.
5. Values like `FE_DOWNWARD` and other, which specify rounding mode in
library calls `fesetround` and `fegetround`. Often they represent bits
of some control register, so they are target-dependent. The same names
(not values) and a special name `FE_DYNAMIC` are used in
`#pragma STDC FENV_ROUND`.
The first 4 sets of constants are target independent and could have the
same numerical representation. It would simplify conversion between the
representations. Also now `clang::LangOptions::FPRoundingModeKind` and
`llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding
direction `roundTiesToAway`, although it is supported natively on
some targets.
This change defines all the rounding mode type via one `llvm::RoundingMode`,
which also contains rounding mode for IEEE rounding direction `roundTiesToAway`.
Differential Revision: https://reviews.llvm.org/D77379
Summary:
Splitting Knowledge retention into Queries in Analysis and Builder into Transform/Utils
allows Queries and Transform/Utils to use Analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77171
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
Summary:
Rename `succ_const_iterator` to `const_succ_iterator` and
`succ_const_range` to `const_succ_range` for consistency with the
predecessor iterators, and the corresponding iterators in
MachineBasicBlock.
Reviewers: nicholas, dblaikie, nlewycky
Subscribers: hiraditya, bmahjour, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75952
This patch integrates operand bundle llvm.assumes [0] with the
Attributor. Most IRAttributes will now look at uses of the associated
value and if there are llvm.assume operand bundle uses with the right
tag we will check if they are in the must-be-executed-context (around
the context instruction). Droppable users, which is currently only
llvm::assume, are handled special in some places now as well.
[0] http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D74888
The initial implementation just delegates to APInt's implementation of
XOR for single element ranges and conservatively returns the full set
otherwise.
Reviewers: nikic, spatel, lebedev.ri
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D76453