one aspect of them by having them use the (annoying, if not broken)
proper library dependency model for adding the LLVMTableGen library as
a dependency. This could manifest as a link order issue in the presence
of separate LLVM / Clang source builds with CMake and a linker that
really cares about such things.
Also, add the Support dependency to llvm-tblgen itself so that it
doesn't rely on TableGen's transitive Support dependency. A parallel
change for clang-tblgen will be forthcoming.
llvm-svn: 143531
This allows the (many) pseudo-instructions we have that map onto a single
real instruction to have their expansion during MC lowering handled
automatically instead of the current cumbersome manual expansion required.
These sorts of pseudos are common when an instruction is used in situations
that require different MachineInstr flags (isTerminator, isBranch, et. al.)
than the generic instruction description has. For example, using a move
to the PC to implement a branch.
llvm-svn: 134704
I'll be moving some more code there to gather all of the
register-specific stuff in one place. Currently it is shared between
CodeGenTarget and RegisterInfoEmitter.
The plan is that CodeGenRegisters can compute the full register bank
structure while RegisterInfoEmitter only will handle the printing part.
llvm-svn: 132788
A TableGen backend can define how certain classes can be expanded into
ordered sets of defs, typically by evaluating a specific field in the
record. The SetTheory class can then evaluate DAG expressions that refer
to these named sets.
A number of standard set and list operations are predefined, and the
backend can add more specialized operators if needed. The -print-sets
backend is used by SetTheory.td to provide examples.
This is intended to simplify how register classes are defined:
def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)>;
llvm-svn: 132621
library.
Installs tblgen (required by Clang).
Translates handling of user settings and platform-dependant options to
its own file, where it can included by another project.
Installs the .cmake files required by projects like Clang.
llvm-svn: 124816
of the intrinsics. The goal is to auto-generate both support for GCC-style (vector)
and ARM-style (struct of vector) intrinsics.
This is work in progress, but will be completed soon.
llvm-svn: 104910
produce a table based matcher instead of gobs of C++ Code.
Though it's not done yet, the shrinkage seems promising,
the table for the X86 ISel is 75K and still has a lot of
optimization to come (compare to the ~1.5M of .o generated
the old way, much of which will go away).
The code is currently disabled by default (the #if 0 in
DAGISelEmitter.cpp). When enabled it generates a dead
SelectCode2 function in the DAGISel Header which will
eventually replace SelectCode.
There is still a lot of stuff left to do, which are
documented with a trail of FIXMEs.
llvm-svn: 96215
incarnations), integrated into the MC framework.
The disassembler is table-driven, using a custom TableGen backend to
generate hierarchical tables optimized for fast decode. The disassembler
consumes MemoryObjects and produces arrays of MCInsts, adhering to the
abstract base class MCDisassembler (llvm/MC/MCDisassembler.h).
The disassembler is documented in detail in
- lib/Target/X86/Disassembler/X86Disassembler.cpp (disassembler runtime)
- utils/TableGen/DisassemblerEmitter.cpp (table emitter)
You can test the disassembler by running llvm-mc -disassemble for i386
or x86_64 targets. Please let me know if you encounter any problems
with it.
llvm-svn: 91749
bits, use a union of a SimpleValueType enum and a regular Type*.
This increases the size of MVT on 64-bit hosts from 32 bits to 64 bits.
In most cases, this doesn't add significant overhead. There are places
in codegen that use arrays of MVTs, so these are now larger, but
they're small in common cases.
This eliminates restrictions on the size of integer types and vector
types that can be represented in codegen. As the included testcase
demonstrates, it's now possible to codegen very large add operations.
There are still some complications with using very large types. PR2880
is still open so they can't be used as return values on normal targets,
there are no libcalls defined for very large integers so operations
like multiply and divide aren't supported.
This also introduces a minimal tablgen Type library, capable of
handling IntegerType and VectorType. This will allow parts of
TableGen that don't depend on using SimpleValueType values to handle
arbitrary integer and vector types.
llvm-svn: 58623