This commit moves getSLEB128Size() and getULEB128Size() from
MCAsmInfo to LEB128.h and removes some copy-and-paste code.
Besides, this commit also adds some unit tests for the LEB128
functions.
llvm-svn: 201937
The operator+() and operator-() do not change the member
variables of SuccIterator. This CL will qualify the *this*
pointer with const.
llvm-svn: 201933
CodeGenPrepare uses extensively TargetLowering which is part of libLLVMCodeGen.
This is a layer violation which would introduce eventually a dependence on
CodeGen in ScalarOpts.
Move CodeGenPrepare into libLLVMCodeGen to avoid that.
Follow-up of <rdar://problem/15519855>
llvm-svn: 201912
This interface allows IRObjectFile to be implemented without having dummy
methods for all section and segment related methods.
Both llvm-ar and llvm-nm are changed to use it. Unfortunately the mangler is
still not plugged in since it requires some refactoring to make a Module hold
a DataLayout.
llvm-svn: 201881
This replaces the old NoIntegratedAssembler with at TargetOption. This is
more flexible and will be used to forward clang's -no-integrated-as option.
llvm-svn: 201836
should not be marked nounwind.
Marking them nounwind caused crashes in the WebKit FTL JIT, because if we enable
sufficient optimizations, LLVM starts eliding compact_unwind sections (or any unwind
data for that matter), making deoptimization via stackmaps impossible.
This changes the stackmap intrinsic to be may-throw, adds a test for exactly the
sympton that WebKit saw, and fixes TableGen to handle un-attributed intrinsics.
Thanks to atrick and philipreames for reviewing this.
llvm-svn: 201826
The SuppressWarnings flag, unfortunately, isn't very useful for custom tools
that want to use the LLVM module linker. So I'm changing it to a parameter of
the Linker, and the flag itself moves to the llvm-link tool.
For the time being as SuppressWarnings is pretty much the only "option" it
seems reasonable to propagate it to Linker objects. If we end up with more
options in the future, some sort of "struct collecting options" may be a
better idea.
llvm-svn: 201819
Change parameter names exposed in headers to avoid collisions with Objective-C++
keywords.
Contributed-by: Graham Lee <graham@iamleeg.com>
llvm-svn: 201727
TargetLoweringBase is implemented in CodeGen, so before this patch we had
a dependency fom Target to CodeGen. This would show up as a link failure of
llvm-stress when building with -DBUILD_SHARED_LIBS=ON.
This fixes pr18900.
llvm-svn: 201711
r201608 made llvm corretly handle private globals with MachO. r201622 fixed
a bug in it and r201624 and r201625 were changes for using private linkage,
assuming that llvm would do the right thing.
They all got reverted because r201608 introduced a crash in LTO. This patch
includes a fix for that. The issue was that TargetLoweringObjectFile now has
to be initialized before we can mangle names of private globals. This is
trivially true during the normal codegen pipeline (the asm printer does it),
but LTO has to do it manually.
llvm-svn: 201700
The same code (~20 lines) for initializing a TargetOptions object from CodeGen
cmdline flags is duplicated 4 times in 4 different tools. This patch moves it
into a utility function.
Since the CodeGen/CommandFlags.h file defines cl::opt flags in a header, it's
a bit of a touchy situation because we should only link them into tools. So this
patch puts the init function in the header.
llvm-svn: 201699
According to http://gcc.gnu.org/projects/cxx0x.html,
override and final keyword was added in gcc 4.7. Thus,
we should not use these keywords in gcc 4.6 even when
__GXX_EXPERIMENTAL_CXX0X__ is available.
llvm-svn: 201679
On x86, shifting a vector by a scalar is significantly cheaper than shifting a
vector by another fully general vector. Unfortunately, because SelectionDAG
operates on just one basic block at a time, the shufflevector instruction that
reveals whether the right-hand side of a shift *is* really a scalar is often
not visible to CodeGen when it's needed.
This adds another handler to CodeGenPrepare, to sink any useful shufflevector
instructions down to the basic block where they're used, predicated on a target
hook (since on other architectures, doing so will often just introduce extra
real work).
rdar://problem/16063505
llvm-svn: 201655
Load Configuration Table may contain a pointer to SEH table. This patch is to
print the offset to the table. Printing SEH table contents is a TODO.
The layout of Layout Configuration Table is described in Microsoft PE/COFF
Object File Format Spec, but the table's offset/size descriptions seems to be
totally wrong, at least in revision 8.3 of the spec. I believe the table in
this patch is the correct one.
llvm-svn: 201638
When outputting an object we check its section to find its name, but when
looking for the section with -ffunction-section we look for the symbol name.
Break the loop by requesting a name with the private prefix when constructing
the section name. This matches the behavior before r201608.
llvm-svn: 201622
The IR
@foo = private constant i32 42
is valid, but before this patch we would produce an invalid MachO from it. It
was invalid because it would use an L label in a section where the liker needs
the labels in order to atomize it.
One way of fixing it would be to just reject this IR in the backend, but that
would not be very front end friendly.
What this patch does is use an 'l' prefix in sections that we know the linker
requires symbols for atomizing them. This allows frontends to just use
private and not worry about which sections they go to or how the linker handles
them.
One small issue with this strategy is that now a symbol name depends on the
section, which is not available before codegen. This is not a problem in
practice. The reason is that it only happens with private linkage, which will
be ignored by the non codegen users (llvm-nm and llvm-ar).
llvm-svn: 201608
During LSR of one loop we can run into a situation where we have to expand the
start of a recurrence of a loop induction variable in this loop. This start
value is a value derived of the induction variable of a preceeding loop. SCEV
has cannonicalized this value to a different recurrence than the recurrence of
the preceeding loop's induction variable (the type and/or step direction) has
changed). When we come to instantiate this SCEV we created a second induction
variable in this preceeding loop. This patch tries to base such derived
induction variables of the preceeding loop's induction variable.
This helps twolf on arm and seems to help scimark2 on x86.
Reapply with a fix for the case of a value derived from a pointer.
radar://15970709
llvm-svn: 201496
During LSR of one loop we can run into a situation where we have to expand the
start of a recurrence of a loop induction variable in this loop. This start
value is a value derived of the induction variable of a preceeding loop. SCEV
has cannonicalized this value to a different recurrence than the recurrence of
the preceeding loop's induction variable (the type and/or step direction) has
changed). When we come to instantiate this SCEV we created a second induction
variable in this preceeding loop. This patch tries to base such derived
induction variables of the preceeding loop's induction variable.
This helps twolf on arm and seems to help scimark2 on x86.
radar://15970709
llvm-svn: 201465
This should be a small build time improvement in general and fixes
the build on OS X with -DBUILD_SHARED_LIBS=ON.
The issue is that not all users are including GenericDomTreeConstruction.h,
causing undefined references when ld64 managed to hide the
linkonce_odr symbols.
llvm-svn: 201440
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for
targets with mature MC support. Such targets will always parse the inline
assembly (even when emitting assembly). Targets without mature MC support
continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced
with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler
to parse inline assembly (even when emitting assembly output). UseIntegratedAs
is set to true for targets that consider any failure to parse valid assembly
to be a bug. Target specific subclasses generally enable the integrated
assembler in their constructor. The default value can be overridden with
-no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example,
those that use mnemonics such as 'foo' or 'hello world') have been updated to
disable the integrated assembler.
Changes since review (and last commit attempt):
- Fixed test failures that were missed due to configuration of local build.
(fixes crash.ll and a couple others).
- Fixed tests that happened to pass because the local build was on X86
(should fix 2007-12-17-InvokeAsm.ll)
- mature-mc-support.ll's should no longer require all targets to be compiled.
(should fix ARM and PPC buildbots)
- Object output (-filetype=obj and similar) now forces the integrated assembler
to be enabled regardless of default setting or -no-integrated-as.
(should fix SystemZ buildbots)
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201333
'OK_NonUniformConstValue' to identify operands which are constants but
not constant splats.
The cost model now allows returning 'OK_NonUniformConstValue'
for non splat operands that are instances of ConstantVector or
ConstantDataVector.
With this change, targets are now able to compute different costs
for instructions with non-uniform constant operands.
For example, On X86 the cost of a vector shift may vary depending on whether
the second operand is a uniform or non-uniform constant.
This patch applies the following changes:
- The cost model computation now takes into account non-uniform constants;
- The cost of vector shift instructions has been improved in
X86TargetTransformInfo analysis pass;
- BBVectorize, SLPVectorizer and LoopVectorize now know how to distinguish
between non-uniform and uniform constant operands.
Added a new test to verify that the output of opt
'-cost-model -analyze' is valid in the following configurations: SSE2,
SSE4.1, AVX, AVX2.
llvm-svn: 201272
The ID type for the stackmap and patchpoint intrinsics are in both cases i64.
This fixes an zero extend in the SelectionDAGBuilder that still used i32. This
also updates the target independent instructions STACKMAP and PATCHPOINT to use
the correct type.
llvm-svn: 201262
required for all sections in a module. This can be useful when targets or
code-models place strict requirements on how sections must be laid out
in memory.
If RTDyldMemoryManger::needsToReserveAllocationSpace() is overridden to return
true then the JIT will call the following method on the memory manager, which
can be used to preallocate the necessary memory.
void RTDyldMemoryManager::reserveAllocationSpace(uintptr_t CodeSize,
uintptr_t DataSizeRO,
uintptr_t DataSizeRW)
Patch by Vaidas Gasiunas. Thanks very much Viadas!
llvm-svn: 201259
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201237
This function adds an extra path argument to lto_module_create_from_memory.
The path argument will be passed to makeBuffer to make sure the MemoryBuffer
has a name and the created module has a module identifier.
This is mainly for emitting warning messages from the linker. When we emit
warning message on a module, we can use the module identifier.
rdar://15985737
llvm-svn: 201114