This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
The theory is it's still faster than a pair of movq / a quad of movl. This
will probably hurt older chips like P4 but should run faster on current
and future Intel processors. rdar://8817010
llvm-svn: 122955
This allows us to compile:
void test(char *s, int a) {
__builtin_memset(s, a, 15);
}
into 1 mul + 3 stores instead of 3 muls + 3 stores.
llvm-svn: 122710
We could implement a DAGCombine to turn x * 0x0101 back into logic operations
on targets that doesn't support the multiply or it is slow (p4) if someone cares
enough.
Example code:
void test(char *s, int a) {
__builtin_memset(s, a, 4);
}
before:
_test: ## @test
movzbl 8(%esp), %eax
movl %eax, %ecx
shll $8, %ecx
orl %eax, %ecx
movl %ecx, %eax
shll $16, %eax
orl %ecx, %eax
movl 4(%esp), %ecx
movl %eax, 4(%ecx)
movl %eax, (%ecx)
ret
after:
_test: ## @test
movzbl 8(%esp), %eax
imull $16843009, %eax, %eax ## imm = 0x1010101
movl 4(%esp), %ecx
movl %eax, 4(%ecx)
movl %eax, (%ecx)
ret
llvm-svn: 122707
x86-32: 32-bit calls were named "call" not "calll". 64-bit calls were correctly
named "callq", so this only impacted x86-32.
This fixes rdar://8456370 - llvm-mc rejects 'calll'
This also exposes that mingw/64 is generating a 32-bit call instead of a 64-bit call,
I will file a bugzilla.
llvm-svn: 114534
1. Makes it possible to lower with floating point loads and stores.
2. Avoid unaligned loads / stores unless it's fast.
3. Fix some memcpy lowering logic bug related to when to optimize a
load from constant string into a constant.
4. Adjust x86 memcpy lowering threshold to make it more sane.
5. Fix x86 target hook so it uses vector and floating point memory
ops more effectively.
rdar://7774704
llvm-svn: 100090
This is not just a matter of passing in the target triple from the module;
currently backends are making decisions based on the build and host
architecture. The goal is to migrate to making these decisions based off of the
triple (in conjunction with the feature string). Thus most clients pass in the
target triple, or the host triple if that is empty.
This has one important change in the way behavior of the JIT and llc.
For the JIT, it was previously selecting the Target based on the host
(naturally), but it was setting the target machine features based on the triple
from the module. Now it is setting the target machine features based on the
triple of the host.
For LLC, -march was previously only used to select the target, the target
machine features were initialized from the module's triple (which may have been
empty). Now the target triple is taken from the module, or the host's triple is
used if that is empty. Then the triple is adjusted to match -march.
The take away is that -march for llc is now used in conjunction with the host
triple to initialize the subtarget. If users want more deterministic behavior
from llc, they should use -mtriple, or set the triple in the input module.
llvm-svn: 77946
1. x86-64 byval alignment should be max of 8 and alignment of type. Previously the code was not doing what the commit message was saying.
2. Do not use byte repeat move and store operations. These are slow.
llvm-svn: 55139