I'll admit I'm not entirely satisfied with this change, but it seemed
the cleanest option. Other suggestions quite welcome
The issue is that the traits specializations have static methods which
return the typedef'ed PHI_iterator type. In both the IR and MI layers
this is typedef'ed to a custom iterator class defined in an anonymous
namespace giving the types and the functions returning them internal
linkage. However, because the traits specialization is defined in the
'llvm' namespace (where it has to be, specialized template lives there),
and is in turn used in the templated implementation of the SSAUpdater.
This led to the linkage conflict that Clang now warns about.
The simplest solution to me was just to define the PHI_iterator as
a nested class inside the trait specialization. That way it still
doesn't get scoped widely, it can't be accidentally reused somewhere,
etc. This is a little gross just because nested class definitions are
a little gross, but the alternatives seem more ad-hoc.
llvm-svn: 158799
The present implementation handles only TBAA and FP metadata, discarding everything else.
For debug metadata, the current behavior is maintained (the debug metadata associated with
one of the instructions will be kept, discarding that attached to the other).
This should address PR 13040.
llvm-svn: 158606
Dynamic GEPs created by SROA needed to insert extra "i32 0"
operands to index through structs and arrays to get to the
vector being indexed.
llvm-svn: 158590
For non-address users, Base and Scaled registers are not specially
associated to fit an address mode, so SCEVExpander should apply normal
expansion rules. Otherwise we may sink computation into inner loops
that have already been optimized.
llvm-svn: 158537
example degenerate phi nodes and binops that use themselves in unreachable code.
Thanks to Charles Davis for the testcase that uncovered this can of worms.
llvm-svn: 158508
since then the entire expression must equal zero (similarly for other operations
with an absorbing element). With this in place a bunch of reassociate code for
handling constants is dead since it is all taken care of when linearizing. No
intended functionality change.
llvm-svn: 158398
This patch extends FoldBranchToCommonDest to fold unconditional branches.
For unconditional branches, we fold them if it is easy to update the phi nodes
in the common successors.
rdar://10554090
llvm-svn: 158392
POD type, causing memory corruption when mapping to APInts with bitwidth > 64.
Merge another crash testcase into crash.ll while there.
llvm-svn: 158369
topologies, it is quite possible for a leaf node to have huge multiplicity, for
example: x0 = x*x, x1 = x0*x0, x2 = x1*x1, ... rapidly gives a value which is x
raised to a vast power (the multiplicity, or weight, of x). This patch fixes
the computation of weights by correctly computing them no matter how big they
are, rather than just overflowing and getting a wrong value. It turns out that
the weight for a value never needs more bits to represent than the value itself,
so it is enough to represent weights as APInts of the same bitwidth and do the
right overflow-avoiding dance steps when computing weights. As a side-effect it
reduces the number of multiplies needed in some cases of large powers. While
there, in view of external uses (eg by the vectorizer) I made LinearizeExprTree
static, pushing the rank computation out into users. This is progress towards
fixing PR13021.
llvm-svn: 158358
This saves a cast, and zext is more expensive on platforms with subreg support
than trunc is. This occurs in the BSD implementation of memchr(3), see PR12750.
On the synthetic benchmark from that bug stupid_memchr and bsd_memchr have the
same performance now when not inlining either function.
stupid_memchr: 323.0us
bsd_memchr: 321.0us
memchr: 479.0us
where memchr is the llvm-gcc compiled bsd_memchr from osx lion's libc. When
inlining is enabled bsd_memchr still regresses down to llvm-gcc memchr time,
I haven't fully understood the issue yet, something is grossly mangling the
loop after inlining.
llvm-svn: 158297
-%a + 42
into
42 - %a
previously we were emitting:
-(%a + 42)
This fixes the infinite loop in PR12338. The generated code is still not perfect, though.
Will work on that next
llvm-svn: 158237
problem was that by moving instructions around inside the function, the pass
could accidentally move the iterator being used to advance over the function
too. Fix this by only processing the instruction equal to the iterator, and
leaving processing of instructions that might not be equal to the iterator
to later (later = after traversing the basic block; it could also wait until
after traversing the entire function, but this might make the sets quite big).
Original commit message:
Grab-bag of reassociate tweaks. Unify handling of dead instructions and
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
llvm-svn: 158226
can move instructions within the instruction list. If the instruction just
happens to be the one the basic block iterator is pointing to, and it is
moved to a different basic block, then we get into an infinite loop due to
the iterator running off the end of the basic block (for some reason this
doesn't fire any assertions). Original commit message:
Grab-bag of reassociate tweaks. Unify handling of dead instructions and
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
llvm-svn: 158199
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
llvm-svn: 158090
instructions to reoptimize. Exploit this to more systematically eliminate
dead instructions (this isn't very useful in practice but is convenient for
analysing some testcase I am working on). No need for WeakVH any more: use
an AssertingVH instead.
llvm-svn: 158073
replacement to make it at least as generic as the instruction being replaced.
This includes:
* dropping nsw/nuw flags
* getting the least restrictive tbaa and fpmath metadata
* merging ranges
Fixes PR12979.
llvm-svn: 157958
inject some code in that will run via the "__mod_init_func" method that
registers the gcov "writeout" function to execute at exit time.
The problem is that the "__mod_term_func" method of specifying d'tors is
deprecated on Darwin. And it can lead to some ambiguities when dealing with
multiple libraries.
<rdar://problem/11110106>
llvm-svn: 157852
- compute size & offset at the same time. The side-effects of this are that we now support negative GEPs. It's now approaching a phase that it can be reused by other passes (e.g., lowering of the objectsize intrinsic)
- use APInt throughout to handle wrap-arounds
- add support for PHI instrumentation
- add a cache (required for recursive PHIs anyway)
- remove hoisting support for now, since it was wrong in a few cases
sorry for the churn here.. tests will follow soon.
llvm-svn: 157775
- hoist checks out of loops where SCEV is smart enough
- add additional statistics to measure how much we loose for not supporting interprocedural and pointers loaded from memory
llvm-svn: 157649
The test case feeds the following into InstCombine's visitSelect:
%tobool8 = icmp ne i32 0, 0
%phitmp = select i1 %tobool8, i32 3, i32 0
Then instcombine replaces the right side of the switch with 0, doesn't notice
that nothing changes and tries again indefinitely.
This fixes PR12897.
llvm-svn: 157587
Implemented IntItem - the wrapper around APInt. Why not to use APInt item directly right now?
1. It will very difficult to implement case ranges as series of small patches. We got several large and heavy patches. Each patch will about 90-120 kb. If you replace ConstantInt with APInt in SwitchInst you will need to changes at the same time all Readers,Writers and absolutely all passes that uses SwitchInst.
2. We can implement APInt pool inside and save memory space. E.g. we use several switches that works with 256 bit items (switch on signatures, or strings). We can avoid value duplicates in this case.
3. IntItem can be easyly easily replaced with APInt.
4. Currenly we can interpret IntItem both as ConstantInt and as APInt. It allows to provide SwitchInst methods that works with ConstantInt for non-updated passes.
Why I need it right now? Currently I need to update SimplifyCFG pass (EqualityComparisons). I need to work with APInts directly a lot, so peaces of code
ConstantInt *V = ...;
if (V->getValue().ugt(AnotherV->getValue()) {
...
}
will look awful. Much more better this way:
IntItem V = ConstantIntVal->getValue();
if (AnotherV < V) {
}
Of course any reviews are welcome.
P.S.: I'm also going to rename ConstantRangesSet to IntegersSubset, and CRSBuilder to IntegersSubsetMapping (allows to map individual subsets of integers to the BasicBlocks).
Since in future these classes will founded on APInt, it will possible to use them in more generic ways.
llvm-svn: 157576
replicating the code for every place it's needed, we instead generate a function
that does that for us. This function is local to the executable, so there
shouldn't be any writing violations.
llvm-svn: 157564
making it stronger and more sane.
Delete the code from tblgen that produced the old code.
Besides being a path forward in intrinsic sanity, this also eliminates a bunch of
machine generated code that was compiled into Function.o
llvm-svn: 157545
then it doesn't alter the instructions composing it, however it would continue
to move the instructions to just before the expression root. Ensure it doesn't
move them either, so now it really does nothing if there is nothing to do. That
commit also ensured that nsw etc flags weren't cleared if the expression was not
being changed. Tweak this a bit so that it doesn't clear flags on the initial
part of a computation either if that part didn't change but later bits did.
llvm-svn: 157518
are passed in. However, those arguments may be in a write-protected area, as far
as the runtime library is concerned. For instance, the data could be placed into
a 'linkedit' section, which isn't writable. Emit the code from
llvm_gcda_increment_indirect_counter directly into the function instead.
Note: The code for this is ugly, and can lead to bloat. We should look into
simplifying this code instead of having all of these branches.
<rdar://problem/11181370>
llvm-svn: 157505
with arbitrary topologies (previously it would give up when hitting a diamond
in the use graph for example). The testcase from PR12764 is now reduced from
a pile of additions to the optimal 1617*%x0+208. In doing this I changed the
previous strategy of dropping all uses for expression leaves to one of dropping
all but one use. This works out more neatly (but required a bunch of tweaks)
and is also safer: some recently fixed bugs during recursive linearization were
because the linearization code thinks it completely owns a node if it has no uses
outside the expression it is linearizing. But if the node was also in another
expression that had been linearized (and thus all uses of the node from that
expression dropped) then the conclusion that it is completely owned by the
expression currently being linearized is wrong. Keeping one use from within each
linearized expression avoids this kind of mistake.
llvm-svn: 157467
LowerSwitch::Clusterify : main functinality was replaced with CRSBuilder::optimize, so big part of Clusterify's code was reduced.
test/Transform/LowerSwitch/feature.ll - this test was refactored: grep + count was replaced with FileCheck usage.
llvm-svn: 157384
leader table. That's because it wasn't expecting instructions to turn up as
leader for a value number that is not its own, but equality propagation could
create this situation. One solution is to have the leader table use a WeakVH
but this slows down GVN by about 5%. Instead just have equality propagation not
add instructions to the leader table, only constants and arguments. In theory
this might cause GVN to run more (each time it changes something it runs again)
but it doesn't seem to occur enough to cause a slow down.
llvm-svn: 157251
so that it can be reused in MemCpyOptimizer. This analysis is needed to remove
an unnecessary memcpy when returning a struct into a local variable.
rdar://11341081
PR12686
llvm-svn: 156776
refactor code a bit to enable future changes to support run-time information
add support to compute allocation sizes at run-time if penalty > 1 (e.g., malloc(x), calloc(x, y), and VLAs)
llvm-svn: 156515
replace the operands of expressions with only one use with undef and generate
a new expression for the original without using RAUW to update the original.
Thus any copies of the original expression held in a vector may end up
referring to some bogus value - and using a ValueHandle won't help since there
is no RAUW. There is already a mechanism for getting the effect of recursion
non-recursively: adding the value to be recursed on to RedoInsts. But it wasn't
being used systematically. Have various places where recursion had snuck in at
some point use the RedoInsts mechanism instead. Fixes PR12169.
llvm-svn: 156379
The primitive conservative heuristic seems to give a slight overall
improvement while not regressing stuff. Make it available to wider
testing. If you notice any speed regressions (or significant code
size regressions) let me know!
llvm-svn: 156258
This came up when a change in block placement formed a cmov and slowed down a
hot loop by 50%:
ucomisd (%rdi), %xmm0
cmovbel %edx, %esi
cmov is a really bad choice in this context because it doesn't get branch
prediction. If we emit it as a branch, an out-of-order CPU can do a better job
(if the branch is predicted right) and avoid waiting for the slow load+compare
instruction to finish. Of course it won't help if the branch is unpredictable,
but those are really rare in practice.
This patch uses a dumb conservative heuristic, it turns all cmovs that have one
use and a direct memory operand into branches. cmovs usually save some code
size, so we disable the transform in -Os mode. In-Order architectures are
unlikely to benefit as well, those are included in the
"predictableSelectIsExpensive" flag.
It would be better to reuse branch probability info here, but BPI doesn't
support select instructions currently. It would make sense to use the same
heuristics as the if-converter pass, which does the opposite direction of this
transform.
Test suite shows a small improvement here and there on corei7-level machines,
but the actual results depend a lot on the used microarchitecture. The
transformation is currently disabled by default and available by passing the
-enable-cgp-select2branch flag to the code generator.
Thanks to Chandler for the initial test case to him and Evan Cheng for providing
me with comments and test-suite numbers that were more stable than mine :)
llvm-svn: 156234
of the CodeExtractor utility. This allows speculatively computing input
and output sets to measure the likely size impact of the code
extraction.
These sets cannot be reused sadly -- we mutate the function prior to
forming the final sets used by the actual extraction.
The interface has been revamped slightly to make it easier to use
correctly by making the interface const and sinking the computation of
the number of exit blocks into the full extraction function and away
from the rest of this logic which just computed two output parameters.
llvm-svn: 156168