was that we weren't properly handling the case when interior
nodes of a matched pattern become dead after updating chain
and flag uses. Now we handle this explicitly in
UpdateChainsAndFlags.
llvm-svn: 97561
DoInstructionSelection. Inline "SelectRoot" into it from DAGISelHeader.
Sink some other stuff out of DAGISelHeader into SDISel.
Eliminate the various 'Indent' stuff from various targets, which dates
to when isel was recursive.
17 files changed, 114 insertions(+), 430 deletions(-)
llvm-svn: 97555
stuff now that we don't care about emulating the old broken
behavior of the old isel. This eliminates the
'CheckChainCompatible' check (along with IsChainCompatible) which
did an incorrect and inefficient scan *up* the chain nodes which
happened as the pattern was being formed and does the validation
at the end in HandleMergeInputChains when it forms a structural
pattern. This scans "down" the graph, which means that it is
quickly bounded by nodes already selected. This also handles
token factors that get "trapped" in the dag.
Removing the CheckChainCompatible nodes also shrinks the
generated tables by about 6K for X86 (down to 83K).
There are two pieces remaining before I can nuke PreprocessRMW:
1. I xfailed a test because we're now producing worse code in a
case that has nothing to do with the change: it turns out that
our use of MorphNodeTo will leave dead nodes in the graph
which (depending on how the graph is walked) end up causing
bogus uses of chains and blocking matches. This is really
bad for other reasons, so I'll fix this in a follow-up patch.
2. CheckFoldableChainNode needs to be improved to handle the TF.
llvm-svn: 97539
ComplexPattern at the root be generated multiple times, once
for each opcode they are part of. This encourages factoring
because the opcode checks get treated just like everything
else in the matcher.
llvm-svn: 97439
to a scope where every child starts with a CheckOpcode, but
executes more efficiently. Enhance DAGISelMatcherOpt to
form it.
This also fixes a bug in CheckOpcode: apparently the SDNodeInfo
objects are not pointer comparable, we have to compare the
enum name.
llvm-svn: 97438
specifies whether there is an output flag or not. Use this
instead of redundantly encoding the chain/flag results in the
output vtlist.
llvm-svn: 97419
even some the old isel didn't. There are several parts of
this that make me feel dirty, but it's no worse than the
old isel. I'll clean up the parts I can do without ripping
out the old one next.
llvm-svn: 97415
It gets its own implementation totally divorced from the (presumably
performance-sensitive) routines which parse into a uint64_t.
Add APInt::operator|=(uint64_t), which is situationally much better than
using a full APInt.
llvm-svn: 97381
payloads. APFloat's internal folding routines always make QNaNs now,
instead of sometimes making QNaNs and sometimes SNaNs depending on the
type.
llvm-svn: 97364
and restore the entire matcher stack by value. This is because children
we're testing could do moveparent or other things besides just
scribbling on additions to the stack.
llvm-svn: 97212
instead of to have a chained series of scope nodes. This makes
the generated table smaller, improves the efficiency of the
interpreter, and make the factoring optimization much more
reasonable to implement.
llvm-svn: 97160
terms of store and load, which means bitcasting between scalar
integer and vector has endian-specific results, which undermines
this whole approach.
llvm-svn: 97137
the number of value bits, not the number of bits of allocation for in-memory
storage.
Make getTypeStoreSize and getTypeAllocSize work consistently for arrays and
vectors.
Fix several places in CodeGen which compute offsets into in-memory vectors
to use TargetData information.
This fixes PR1784.
llvm-svn: 97064
the new isel: fold movechild+record+moveparent into a
single recordchild N node. This shrinks the X86 table
from 125443 to 117502 bytes.
llvm-svn: 97031
necessary to swap the operands to handle NaN and negative zero properly.
Also, reintroduce logic for checking for NaN conditions when forming
SSE min and max instructions, fixed to take into consideration NaNs and
negative zeros. This allows forming min and max instructions in more
cases.
llvm-svn: 97025