Wrapper function call and dispatch handler helpers are moved to
ExecutionSession, and existing EPC-based tools are re-written to take an
ExecutionSession argument instead.
Requiring an ExecutorProcessControl instance simplifies existing EPC based
utilities (which only need to take an ES now), and should encourage more
utilities to use the EPC interface. It also simplifies process termination,
since the session can automatically call ExecutorProcessControl::disconnect
(previously this had to be done manually, and carefully ordered with the
rest of JIT tear-down to work correctly).
Adds support for both synchronous and asynchronous calls to wrapper functions
using SPS (Simple Packed Serialization). Also adds support for wrapping
functions on the JIT side in SPS-based wrappers that can be called from the
executor.
These new methods simplify calls between the JIT and Executor, and will be used
in upcoming ORC runtime patches to enable communication between ORC and the
runtime.
Replace the existing WrapperFunctionResult type in
llvm/include/ExecutionEngine/Orc/Shared/TargetProcessControlTypes.h with a
version adapted from the ORC runtime's implementation.
Also introduce the SimplePackedSerialization scheme (also adapted from the ORC
runtime's implementation) for wrapper functions to avoid manual serialization
and deserialization for calls to runtime functions involving common types.
This is separate from (but builds on) the support added in ec6b71df70a for
emitting LinkGraphs in the context of an active materialization. This commit
makes LinkGraphs a first-class data structure with features equivalent to
object files within ObjectLinkingLayer.
This test was removed in 51495fd285 due to broken bots. Its reintroduction is
expected to trigger failures on some builders. The test has been modified to
print error messages in full, which should aid in tracking these down.
This reapplies 8740360093b, which was reverted in bbddadd46e4 due to buildbot
errors.
This version checks that a JIT instance can be safely constructed, skipping
tests if it can not be. To enable this it introduces new C API to retrieve and
set the target triple for a JITTargetMachineBuilder.
implementation.
This patch aims to improve support for out-of-process JITing using OrcV2. It
introduces two new class templates, OrcRPCTargetProcessControlBase and
OrcRPCTPCServer, which together implement the TargetProcessControl API by
forwarding operations to an execution process via an Orc-RPC Endpoint. These
utilities are used to implement out-of-process JITing from llvm-jitlink to
a new llvm-jitlink-executor tool.
This patch also breaks the OrcJIT library into three parts:
-- OrcTargetProcess: Contains code needed by the JIT execution process.
-- OrcShared: Contains code needed by the JIT execution and compiler
processes
-- OrcJIT: Everything else.
This break-up allows JIT executor processes to link against OrcTargetProcess
and OrcShared only, without having to link in all of OrcJIT. Clients executing
JIT'd code in-process should start linking against OrcTargetProcess as well as
OrcJIT.
In the near future these changes will enable:
-- Removal of the OrcRemoteTargetClient/OrcRemoteTargetServer class templates
which provided similar functionality in OrcV1.
-- Restoration of Chapter 5 of the Building-A-JIT tutorial series, which will
serve as a simple usage example for these APIs.
-- Implementation of lazy, cross-target compilation in lli's -jit-kind=orc-lazy
mode.
This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.
Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.
Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.
Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.
RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.
The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).
This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
This removes all legacy layers, legacy utilities, the old Orc C bindings,
OrcMCJITReplacement, and OrcMCJITReplacement regression tests.
ExecutionEngine and MCJIT are not affected by this change.
Summary:
rL367756 (f5c40cb) increases the dependency of LLVMOrcJIT on LLVMPasses.
In particular, symbols defined in LLVMPasses that are referenced by the
destructor of `PassBuilder` are now referenced by LLVMOrcJIT through
`Speculation.cpp.o`.
We believe that referencing symbols defined in LLVMPasses in the
destructor of `PassBuilder` is valid, and that adding to the set of such
symbols is legitimate. To support such cases, this patch adds LLVMPasses
to the set of libraries being linked when linking in LLVMOrcJIT causes
such symbols from LLVMPasses to be referenced.
Reviewers: Whitney, anhtuyen, pree-jackie
Reviewed By: pree-jackie
Subscribers: mgorny, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66441
llvm-svn: 369310
When failing materialization of a symbol X, remove X from the dependants list
of any of X's dependencies. This ensures that when X's dependencies are
emitted (or fail themselves) they do not try to access the no-longer-existing
MaterializationInfo for X.
llvm-svn: 359252
This commit adds a 'Legacy' prefix to old ORC layers and utilities, and removes
the '2' suffix from the new ORC layers. If you wish to continue using the old
ORC layers you will need to add a 'Legacy' prefix to your classes. If you were
already using the new ORC layers you will need to drop the '2' suffix.
The legacy layers will remain in-tree until the new layers reach feature
parity with them. This will involve adding support for removing code from the
new layers, and ensuring that performance is comperable.
llvm-svn: 344572
(1) Adds comments for the API.
(2) Removes the setArch method: This is redundant: the setArchStr method on the
triple should be used instead.
(3) Turns EmulatedTLS on by default. This matches EngineBuilder's behavior.
llvm-svn: 343423
Explicitly defines ThreadSafeModule's move-assignment operator to move fields in
reverse order. This is required to ensure that the context field outlives the
module field.
llvm-svn: 343149
destroyed before its ThreadSharedContext.
Destroying the context first is an error if this ThreadSafeModule is the only
owner of its underlying context.
Add a unit test for ThreadSafeModule/ThreadSafeContext to catch this and other
basic usage issues.
llvm-svn: 343129
implementation as lazy compile callbacks, and a "lazy re-exports" utility that
builds lazy call-throughs.
Lazy call-throughs are similar to lazy compile callbacks (and are based on the
same underlying state saving/restoring trampolines) but resolve their targets
by performing a standard ORC lookup rather than invoking a user supplied
compiler callback. This allows them to inherit the thread-safety of ORC lookups
while blocking only the calling thread (whereas compile callbacks also block one
compile thread).
Lazy re-exports provide a simple way of building lazy call-throughs. Unlike a
regular re-export, a lazy re-export generates a new address (a stub entry point)
that will act like the re-exported symbol when called. The first call via a
lazy re-export will trigger compilation of the re-exported symbol before calling
through to it.
llvm-svn: 343061
orc::SymbolResolver to JITSymbolResolver adapter.
The new orc::SymbolResolver interface uses asynchronous queries for better
performance. (Asynchronous queries with bulk lookup minimize RPC/IPC overhead,
support parallel incoming queries, and expose more available work for
distribution). Existing ORC layers will soon be updated to use the
orc::SymbolResolver API rather than the legacy llvm::JITSymbolResolver API.
Because RuntimeDyld still uses JITSymbolResolver, this patch also includes an
adapter that wraps an orc::SymbolResolver with a JITSymbolResolver API.
llvm-svn: 323073
version being used on some of the green dragon builders (plus a clang-format).
Workaround: AsynchronousSymbolQuery and VSO want to work with
JITEvaluatedSymbols anyway, so just use them (instead of JITSymbol, which
happens to tickle the bug).
The libcxx bug being worked around was fixed in r276003, and there are plans to
update the offending builders.
llvm-svn: 322140
The original commit broke the builders due to a think-o in an assertion:
AsynchronousSymbolQuery's constructor needs to check the callback member
variables, not the constructor arguments.
llvm-svn: 321853
SymbolSource.
These new APIs are a first stab at tackling some current shortcomings of ORC,
especially in performance and threading support.
VSO (Virtual Shared Object) is a symbol table representing the symbol
definitions of a set of modules that behave as if they had been statically
linked together into a shared object or dylib. Symbol definitions, either
pre-defined addresses or lazy definitions, can be added and queries for symbol
addresses made. The table applies the same linkage strength rules that static
linkers do when constructing a dylib or shared object: duplicate definitions
result in errors, strong definitions override weak or common ones. This class
should improve symbol lookup speed by providing centralized symbol tables (as
compared to the findSymbol implementation in the in-tree ORC layers, which
maintain one symbol table per object file / module added).
AsynchronousSymbolQuery is a query for the addresses of a set of symbols.
Query results are returned via a callback once they become available. Querying
for a set of symbols, rather than one symbol at a time (as the current lookup
scheme does) the JIT has the opportunity to make better use of available
resources (e.g. by spawning multiple jobs to materialize the requested symbols
if possible). Returning results via a callback makes queries asynchronous, so
queries from multiple threads of JIT'd code can proceed simultaneously.
SymbolSource represents a source of symbol definitions. It is used when
adding lazy symbol definitions to a VSO. Symbol definitions can be materialized
when needed or discarded if a stronger definition is found. Materializing on
demand via SymbolSources should (eventually) allow us to remove the lazy
materializers from JITSymbol, which will in turn allow the removal of many
current error checks and reduce the number of RPC round-trips involved in
materializing remote symbols. Adding a discard function allows sources to
discard symbol definitions (or mark them as available_externally), reducing the
amount of redundant code generated by the JIT for ODR symbols.
llvm-svn: 321838
rL319838 introduced SymbolStringPool which uses 8 byte atomics for
reference counters. On systems which do not support such atomics
natively such as MIPS32, explicitly add libatomic as one of the
libraries for SymbolStringPool's unittest.
Reviewers: lhames, beanz
Differential Revision: https://reviews.llvm.org/D41010
llvm-svn: 321225
We currently use target_link_libraries without an explicit scope
specifier (INTERFACE, PRIVATE or PUBLIC) when linking executables.
Dependencies added in this way apply to both the target and its
dependencies, i.e. they become part of the executable's link interface
and are transitive.
Transitive dependencies generally don't make sense for executables,
since you wouldn't normally be linking against an executable. This also
causes issues for generating install export files when using
LLVM_DISTRIBUTION_COMPONENTS. For example, clang has a lot of LLVM
library dependencies, which are currently added as interface
dependencies. If clang is in the distribution components but the LLVM
libraries it depends on aren't (which is a perfectly legitimate use case
if the LLVM libraries are being built static and there are therefore no
run-time dependencies on them), CMake will complain about the LLVM
libraries not being in export set when attempting to generate the
install export file for clang. This is reasonable behavior on CMake's
part, and the right thing is for LLVM's build system to explicitly use
PRIVATE dependencies for executables.
Unfortunately, CMake doesn't allow you to mix and match the keyword and
non-keyword target_link_libraries signatures for a single target; i.e.,
if a single call to target_link_libraries for a particular target uses
one of the INTERFACE, PRIVATE, or PUBLIC keywords, all other calls must
also be updated to use those keywords. This means we must do this change
in a single shot. I also fully expect to have missed some instances; I
tested by enabling all the projects in the monorepo (except dragonegg),
and configuring both with and without shared libraries, on both Darwin
and Linux, but I'm planning to rely on the buildbots for other
configurations (since it should be pretty easy to fix those).
Even after this change, we still have a lot of target_link_libraries
calls that don't specify a scope keyword, mostly for shared libraries.
I'm thinking about addressing those in a follow-up, but that's a
separate change IMO.
Differential Revision: https://reviews.llvm.org/D40823
llvm-svn: 319840
comparison of symbol names.
SymbolStringPool is a thread-safe string pool that will be used in upcoming Orc
APIs to facilitate efficient storage and fast comparison of symbol name strings.
llvm-svn: 319839
This patch introduces RemoteObjectClientLayer and RemoteObjectServerLayer,
which can be used to forward ORC object-layer operations from a JIT stack in
the client to a JIT stack (consisting only of object-layers) in the server.
This is a new way to support remote-JITing in LLVM. The previous approach
(supported by OrcRemoteTargetClient and OrcRemoteTargetServer) used a
remote-mapping memory manager that sat "beneath" the JIT stack and sent
fully-relocated binary blobs to the server. The main advantage of the new
approach is that relocatable objects can be cached on the server and re-used
(if the code that they represent hasn't changed), whereas fully-relocated blobs
can not (since the addresses they have been permanently bound to will change
from run to run).
llvm-svn: 312511
The current ObjectLinkingLayer (now RTDyldObjectLinkingLayer) links objects
in-process using MCJIT's RuntimeDyld class. In the near future I hope to add new
object linking layers (e.g. a remote linking layer that links objects in the JIT
target process, rather than the client), so I'm renaming this class to be more
descriptive.
llvm-svn: 295636
LLVM defines `PTHREAD_LIB` which is used by AddLLVM.cmake and various projects
to correctly link the threading library when needed. Unfortunately
`PTHREAD_LIB` is defined by LLVM's `config-ix.cmake` file which isn't installed
and therefore can't be used when configuring out-of-tree builds. This causes
such builds to fail since `pthread` isn't being correctly linked.
This patch attempts to fix that problem by renaming and exporting
`LLVM_PTHREAD_LIB` as part of`LLVMConfig.cmake`. I renamed `PTHREAD_LIB`
because It seemed likely to cause collisions with downstream users of
`LLVMConfig.cmake`.
llvm-svn: 294690
switch to using one indirect stub manager per logical dylib rather than one per
input module.
LogicalDylib is a helper class used by the CompileOnDemandLayer to manage
symbol resolution between modules during lazy compilation. In particular, it
ensures that internal symbols resolve correctly even in the case where multiple
input modules contain the same internal symbol name (which must to be promoted
to external hidden linkage so that functions in any given module can be split
out by lazy compilation). LogicalDylib's resolution scheme (before this commit)
required one stub-manager per input module. This made recompilation of functions
(by adding a module containing a new definition) difficult, as the stub manager
for any given symbol was bound to the module that supplied the original
definition. By using one stubs manager for the whole logical dylib symbols can
be more easily replaced, although support for doing this is not included in this
patch (it will be implemented in a follow up).
llvm-svn: 279952
This patch adds utilities to ORC for managing a remote JIT target. It consists
of:
1. A very primitive RPC system for making calls over a byte-stream. See
RPCChannel.h, RPCUtils.h.
2. An RPC API defined in the above system for managing memory, looking up
symbols, creating stubs, etc. on a remote target. See OrcRemoteTargetRPCAPI.h.
3. An interface for creating high-level JIT components (memory managers,
callback managers, stub managers, etc.) that operate over the RPC API. See
OrcRemoteTargetClient.h.
4. A helper class for building servers that can handle the RPC calls. See
OrcRemoteTargetServer.h.
The system is designed to work neatly with the existing ORC components and
functionality. In particular, the ORC callback API (and consequently the
CompileOnDemandLayer) is supported, enabling lazy compilation of remote code.
Assuming this doesn't trigger any builder failures, a follow-up patch will be
committed which tests these utilities by using them to replace LLI's existing
remote-JITing demo code.
llvm-svn: 257305