Previously we would also accept DISubprograms that matched in name
only, but this doesn't appear to be necessary any more.
I did a Full and Thin LTO build of Clang and it completed without a warning.
Differential Revision: https://reviews.llvm.org/D75213
This allows for diagnosing malformed LLVM IR debug info metadata such
as the one in the testcase.
<rdar://problem/59756060>
Differential Revision: https://reviews.llvm.org/D75212
First attempt at implementing -fsemantic-interposition.
Rely on GlobalValue::isInterposable that already captures most of the expected
behavior.
Rely on a ModuleFlag to state whether we should respect SemanticInterposition or
not. The default remains no.
So this should be a no-op if -fsemantic-interposition isn't used, and if it is,
isInterposable being already used in most optimisation, they should honor it
properly.
Note that it only impacts architecture compiled with -fPIC and no pie.
Differential Revision: https://reviews.llvm.org/D72829
Summary:
This is a follow up on D61634. It adds an LLVM IR intrinsic to allow better implementation of memcpy from C++.
A follow up CL will add the intrinsics in Clang.
Reviewers: courbet, theraven, t.p.northover, jdoerfert, tejohnson
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71710
Similar to the function attribute `prefix` (prefix data),
"patchable-function-prefix" inserts data (M NOPs) before the function
entry label.
-fpatchable-function-entry=2,1 (1 NOP before entry, 1 NOP after entry)
will look like:
```
.type foo,@function
.Ltmp0: # @foo
nop
foo:
.Lfunc_begin0:
# optional `bti c` (AArch64 Branch Target Identification) or
# `endbr64` (Intel Indirect Branch Tracking)
nop
.section __patchable_function_entries,"awo",@progbits,get,unique,0
.p2align 3
.quad .Ltmp0
```
-fpatchable-function-entry=N,0 + -mbranch-protection=bti/-fcf-protection=branch has two reasonable
placements (https://gcc.gnu.org/ml/gcc-patches/2020-01/msg01185.html):
```
(a) (b)
func: func:
.Ltmp0: bti c
bti c .Ltmp0:
nop nop
```
(a) needs no additional code. If the consensus is to go for (b), we will
need more code in AArch64BranchTargets.cpp / X86IndirectBranchTracking.cpp .
Differential Revision: https://reviews.llvm.org/D73070
The Linux kernel uses -fpatchable-function-entry to implement DYNAMIC_FTRACE_WITH_REGS
for arm64 and parisc. GCC 8 implemented
-fpatchable-function-entry, which can be seen as a generalized form of
-mnop-mcount. The N,M form (function entry points before the Mth NOP) is
currently only used by parisc.
This patch adds N,0 support to AArch64 codegen. N is represented as the
function attribute "patchable-function-entry". We will use a different
function attribute for M, if we decide to implement it.
The patch reuses the existing patchable-function pass, and
TargetOpcode::PATCHABLE_FUNCTION_ENTER which is currently used by XRay.
When the integrated assembler is used, __patchable_function_entries will
be created for each text section with the SHF_LINK_ORDER flag to prevent
--gc-sections (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93197) and
COMDAT (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93195) issues.
Retrospectively, __patchable_function_entries should use a PC-relative
relocation type to avoid the SHF_WRITE flag and dynamic relocations.
"patchable-function-entry"'s interaction with Branch Target
Identification is still unclear (see
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 for GCC discussions).
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D72215
There are a few places that check specific string attributes have
particular values, and assert if they are something else. The verifier
should catch these kinds of cases.
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
A set of function attributes is required in any function that uses constrained
floating point intrinsics. None of our tests use these attributes.
This patch fixes this.
These tests have been tested against the IR verifier changes in D68233.
Reviewed by: andrew.w.kaylor, cameron.mcinally, uweigand
Approved by: andrew.w.kaylor
Differential Revision: https://reviews.llvm.org/D67925
llvm-svn: 373761
Summary:
The list of indirect labels should ALWAYS have their blockaddresses as
argument operands to the callbr (but not necessarily the other way
around). Add an invariant that checks this.
The verifier catches a bad test case that was added recently in r368478.
I think that was a simple mistake, and the test was made less strict in
regards to the precise addresses (as those weren't specifically the
point of the test).
This invariant will be used to find a reported bug.
Link: https://www.spinics.net/lists/arm-kernel/msg753473.html
Link: https://github.com/ClangBuiltLinux/linux/issues/649
Reviewers: craig.topper, void, chandlerc
Reviewed By: void
Subscribers: ychen, lebedev.ri, javed.absar, kristof.beyls, hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67196
llvm-svn: 372923
DIFlagBlockByRefStruct is an unused DIFlag that originally was used by
clang to express (Objective-)C block captures in debug info. For the
last year Clang has been emitting complex DIExpressions to describe
block captures instead, which makes all the code supporting this flag
redundant.
This patch removes the flag and all supporting "dead" code, so we can
reuse the bit for something else in the future.
Since this only affects debug info generated by Clang with the block
extension this mostly affects Apple platforms and I don't have any
bitcode compatibility concerns for removing this. The Verifier will
reject debug info that uses the bit and thus degrade gracefully when
LTO'ing older bitcode with a newer compiler.
rdar://problem/44304813
Differential Revision: https://reviews.llvm.org/D67453
llvm-svn: 372272
Summary:
Add an intrinsic that takes 2 unsigned integers with
the scale of them provided as the third argument and
performs fixed point multiplication on them. The
result is saturated and clamped between the largest and
smallest representable values of the first 2 operands.
This is a part of implementing fixed point arithmetic
in clang where some of the more complex operations
will be implemented as intrinsics.
Patch by: leonardchan, bjope
Reviewers: RKSimon, craig.topper, bevinh, leonardchan, lebedev.ri, spatel
Reviewed By: leonardchan
Subscribers: ychen, wuzish, nemanjai, MaskRay, jsji, jdoerfert, Ka-Ka, hiraditya, rjmccall, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57836
llvm-svn: 371308
Summary:
This patch adds support for scalable vectors in intrinsics, enabling
intrinsics such as the following to be defined:
declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 4 x i32>)
Support for this is implemented by defining a new type descriptor for
scalable vectors and adding mangling support for scalable vector types
in the name mangling scheme used by 'any' types in intrinsic signatures.
Tests have been added for IRBuilder to test scalable vectors work as
expected when using intrinsics through this interface. This required
implementing an intrinsic that is explicitly defined with scalable
vectors, e.g. LLVMType<nxv4i32>, an SVE floating-point convert
intrinsic was used for this. The behaviour of the overloaded type
LLVMScalarOrSameVectorWidth with scalable vectors is tested using the
existing masked load intrinsic. Also added an .ll test to test the
Verifier catches a bad intrinsic argument when passing a fixed-width
predicate (mask) to the masked.load intrinsic where a scalable is
expected.
Patch by Paul Walker
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D65930
llvm-svn: 370053
This check is only meaningful for COFF and it is perfectly valid to create
such a GlobalValue in ELF.
Differential Revision: https://reviews.llvm.org/D65686
llvm-svn: 368094
Summary:
In D62801, new function attribute `willreturn` was introduced. In short, a function with `willreturn` is guaranteed to come back to the call site(more precise definition is in LangRef).
In this patch, willreturn is annotated for LLVM intrinsics.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: jvesely, nhaehnle, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64904
llvm-svn: 367184
Summary:
Allow IntToPtrInst to carry !dereferenceable metadata tag.
This is valid since !dereferenceable can be only be applied to
pointer type values.
Change-Id: If8a6e3c616f073d51eaff52ab74535c29ed497b4
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64954
llvm-svn: 366826
This patch series adds support for the next-generation arch13
CPU architecture to the SystemZ backend.
This includes:
- Basic support for the new processor and its features.
- Assembler/disassembler support for new instructions.
- CodeGen for new instructions, including new LLVM intrinsics.
- Scheduler description for the new processor.
- Detection of arch13 as host processor.
Note: No currently available Z system supports the arch13
architecture. Once new systems become available, the
official system name will be added as supported -march name.
llvm-svn: 365932
Reintroduces the scalable vector IR type from D32530, after it was reverted
a couple of times due to increasing chromium LTO build times. This latest
incarnation removes the walk over aggregate types from the verifier entirely,
in favor of rejecting scalable vectors in the isValidElementType methods in
ArrayType and StructType. This removes the 70% degradation observed with
the second repro tarball from PR42210.
Reviewers: thakis, hans, rengolin, sdesmalen
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D64079
llvm-svn: 365203
We saw a 70% ThinLTO link time increase in Chromium for Android, see
crbug.com/978817. Sounds like more of PR42210.
> Recommit of D32530 with a few small changes:
> - Stopped recursively walking through aggregates in
> the verifier, so that we don't impose too much
> overhead on large modules under LTO (see PR42210).
> - Changed tests to match; the errors are slightly
> different since they only report the array or
> struct that actually contains a scalable vector,
> rather than all aggregates which contain one in
> a nested member.
> - Corrected an older comment
>
> Reviewers: thakis, rengolin, sdesmalen
>
> Reviewed By: sdesmalen
>
> Differential Revision: https://reviews.llvm.org/D63321
llvm-svn: 364543
Add the IR and the AsmPrinter parts for handling of the DW_OP_entry_values
DWARF operation.
([11/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60866
llvm-svn: 364542
A unique DISubprogram may be attached to a function declaration used for
call site debug info.
([6/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60713
llvm-svn: 364500
This patch teaches the Verifier how to detect broken !llvm.loop
attachments as discussed in https://reviews.llvm.org/D60831. This
allows LLVM to warn and strip out the broken debug info before
attempting an LTO compilation with input generated by LLVM predating
https://reviews.llvm.org/rL361149.
rdar://problem/51631158
Differential Revision: https://reviews.llvm.org/D63499
[Re-applies r363725 without changes after fixing a broken testcase.]
llvm-svn: 363731
This patch teaches the Verifier how to detect broken !llvm.loop
attachments as discussed in https://reviews.llvm.org/D60831. This
allows LLVM to warn and strip out the broken debug info before
attempting an LTO compilation with input generated by LLVM predating
https://reviews.llvm.org/rL361149.
rdar://problem/51631158
Differential Revision: https://reviews.llvm.org/D63499
llvm-svn: 363725
Recommit of D32530 with a few small changes:
- Stopped recursively walking through aggregates in
the verifier, so that we don't impose too much
overhead on large modules under LTO (see PR42210).
- Changed tests to match; the errors are slightly
different since they only report the array or
struct that actually contains a scalable vector,
rather than all aggregates which contain one in
a nested member.
- Corrected an older comment
Reviewers: thakis, rengolin, sdesmalen
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D63321
llvm-svn: 363658
This patch tests the forward-referencing added in D62995 by changing
some existing intrinsics to use forward referencing of overloadable
parameters, rather than backward referencing.
This patch changes the TableGen definition/implementation of
llvm.aarch64.neon.ld2lane and llvm.aarch64.neon.ld2lane intrinsics
(and similar for ld3 and ld4). This change is intended to be
non-functional, since the behaviour of the intrinsics is
expected to be the same.
Reviewers: arsenm, dmgreen, RKSimon, greened, rnk
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D63189
llvm-svn: 363546
* Adds a 'scalable' flag to VectorType
* Adds an 'ElementCount' class to VectorType to pass (possibly scalable) vector lengths, with overloaded operators.
* Modifies existing helper functions to use ElementCount
* Adds support for serializing/deserializing to/from both textual and bitcode IR formats
* Extends the verifier to reject global variables of scalable types
* Updates documentation
See the latest version of the RFC here: http://lists.llvm.org/pipermail/llvm-dev/2018-July/124396.html
Reviewers: rengolin, lattner, echristo, chandlerc, hfinkel, rkruppe, samparker, SjoerdMeijer, greened, sebpop
Reviewed By: hfinkel, sebpop
Differential Revision: https://reviews.llvm.org/D32530
llvm-svn: 361953
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
DWARF5, 2.12 20ff says that
Any debugging information entry representing a pointer or reference
type [may have a DW_AT_address_class attribute].
The existing code (https://reviews.llvm.org/D29670) seems to take a
quite literal interpretation of that wording. I don't see a reason why
an rvalue reference isn't a reference type in the spirit of that
paragraph. This patch allows rvalue references to also have address
spaces.
rdar://problem/50511483
Differential Revision: https://reviews.llvm.org/D61625
llvm-svn: 360176
As of r356091, support for the ImmArg intrinsics was added,
including a SystemZ test case. However, that test case doesn't
actually verify all SystemZ intrinsics with immediate arguments,
only a subset. The rest of them actually works correctly, there's
just no test for them. This patch add all missing intrinsics.
llvm-svn: 358495
I found these by asserting in clang for any GCCBuiltin that doesn't
require mangling and requires a constant for the builtin. This means
that intrinsics are missing which don't use GCCBuiltin, don't have
builtins defined in clang, or were missing the constant annotation in
the builtin definition.
llvm-svn: 356144
I found these by asserting in clang for any GCCBuiltin that doesn't
require mangling and requires a constant for the builtin. This means
that intrinsics are missing which don't use GCCBuiltin, don't have
builtins defined in clang, or were missing the constant annotation in
the builtin definition.
llvm-svn: 356091
I found these by asserting in clang for any GCCBuiltin that doesn't
require mangling and requires a constant for the builtin. This means
that intrinsics are missing which don't use GCCBuiltin, don't have
builtins defined in clang, or were missing the constant annotation in
the builtin definition.
I'm not sure what's going on with the immediates.ll test. It seems to
be intended to test invalid cases like this, but then tries to handle
some of them anyway. I've moved the cases that were inconsistent with
the GCCBuiltin definition so they don't test the codegen anymore.
llvm-svn: 356085
This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
The Verifier is separate from the MachineVerifier, so move it to a
different directory. Some other verifier tests were scattered in
target codegen tests as well (although I'm sure I missed some). Work
towards using a more consistent naming scheme to make it clearer where
the gaps still are for generic instructions.
llvm-svn: 354138
These haven't been checking anything useful and have been testing the
wrong failure reason for many years. Replace them with something which
stresses what is actually implemented in the verifier now.
llvm-svn: 354070