objc_release calls
This fixes a bug where the presence of debug instructions would cause
ARC optimizer to change the order of retain and release calls.
rdar://problem/55319419
llvm-svn: 372352
The function could return zero if an extreme number or
registers were used. Minimal possible occupancy is 1.
Differential Revision: https://reviews.llvm.org/D67771
llvm-svn: 372350
Summary:
FlattenCFG may erase unnecessary blocks, which also invalidates iterators to those erased blocks.
Before this patch, `iterativelyFlattenCFG` could try to increment a BB iterator after that BB has been removed and crash.
This patch makes FlattenCFGPass use `WeakVH` to skip over erased blocks.
Reviewers: dblaikie, tstellar, davide, sanjoy, asbirlea, grosser
Reviewed By: asbirlea
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67672
llvm-svn: 372347
At present, `-scalar-evolution-max-iterations` is a `cl::Optional`
option, which means it demands to be passed exactly zero or one times.
Our build system makes it pretty tricky to guarantee this. We often
accidentally pass the flag more than once (but always with the same
value) which results in an error, after which compilation fails:
```
clang (LLVM option parsing): for the -scalar-evolution-max-iterations option: may only occur zero or one times!
```
It seems reasonable to allow -scalar-evolution-max-iterations to be
passed more than once. Quoting the [[ http://llvm.org/docs/CommandLine.html#controlling-the-number-of-occurrences-required-and-allowed | documentation ]]:
> The cl::ZeroOrMore modifier ... indicates that your program will allow the option to be specified zero or more times.
> ...
> If an option is specified multiple times for an option of the cl::opt class, only the last value will be retained.
Original patch by: Enrico Bern Hardy Tanuwidjaja <etanuwid@fb.com>
Differential Revision: https://reviews.llvm.org/D67512
llvm-svn: 372346
This patch implements the demangling functionality as described in the
Vector Function ABI. This patch will be used to implement the
SearchVectorFunctionSystem (SVFS) as described in the RFC:
http://lists.llvm.org/pipermail/llvm-dev/2019-June/133484.html
A fuzzer is added to test the demangling utility.
Patch by Sumedh Arani <sumedh.arani@arm.com>
Differential revision: https://reviews.llvm.org/D66024
llvm-svn: 372343
Summary:
This is again motivated by D67122 sanitizer check enhancement.
That patch seemingly worsens `-fsanitize=pointer-overflow`
overhead from 25% to 50%, which strongly implies missing folds.
In this particular case, given
```
char* test(char& base, unsigned long offset) {
return &base - offset;
}
```
it will end up producing something like
https://godbolt.org/z/luGEju
which after optimizations reduces down to roughly
```
declare void @use64(i64)
define i1 @test(i8* dereferenceable(1) %base, i64 %offset) {
%base_int = ptrtoint i8* %base to i64
%adjusted = sub i64 %base_int, %offset
call void @use64(i64 %adjusted)
%not_null = icmp ne i64 %adjusted, 0
%no_underflow = icmp ule i64 %adjusted, %base_int
%no_underflow_and_not_null = and i1 %not_null, %no_underflow
ret i1 %no_underflow_and_not_null
}
```
Without D67122 there was no `%not_null`,
and in this particular case we can "get rid of it", by merging two checks:
Here we are checking: `Base u>= Offset && (Base u- Offset) != 0`, but that is simply `Base u> Offset`
Alive proofs:
https://rise4fun.com/Alive/QOs
The `@llvm.usub.with.overflow` pattern itself is not handled here
because this is the main pattern, that we currently consider canonical.
https://bugs.llvm.org/show_bug.cgi?id=43251
Reviewers: spatel, nikic, xbolva00, majnemer
Reviewed By: xbolva00, majnemer
Subscribers: vsk, majnemer, xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67356
llvm-svn: 372341
In the example from:
https://bugs.llvm.org/show_bug.cgi?id=38502
...we hit infinite looping/crashing because we have non-standard IR -
an instruction operand is used before defined.
This and other unusual constructs are allowed in unreachable blocks,
so avoid the problem by using DominatorTree to step around landmines.
Differential Revision: https://reviews.llvm.org/D67766
llvm-svn: 372339
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This patch introduces a cut-off threshold for dependency edge frequences with
the goal of simplifying the critical sequence computation. This patch also
removes the cost normalization for loop carried dependencies. We didn't really
need to artificially amplify the cost of loop-carried dependencies since it is
already computed as the integral over time of the delay (in cycle).
In the absence of backend stalls there is no need for computing a critical
sequence. With this patch we early exit from the critical sequence computation
if no bottleneck was reported during the simulation.
llvm-svn: 372337
Lambdas are by deafult const so that they produce the same output every time they are run. This lambda needs to set the value on a captured promise which is a mutating operation, so it must be mutable.
llvm-svn: 372336
This patch converts the DAGCombine isNegatibleForFree/GetNegatedExpression into overridable TLI hooks and includes a demonstration X86 implementation.
The intention is to let us extend existing FNEG combines to work more generally with negatible float ops, allowing it work with target specific combines and opcodes (e.g. X86's FMA variants).
Unlike the SimplifyDemandedBits, we can't just handle target nodes through a Target callback, we need to do this as an override to allow targets to handle generic opcodes as well. This does mean that the target implementations has to duplicate some checks (recursion depth etc.).
I've only begun to replace X86's FNEG handling here, handling FMADDSUB/FMSUBADD negation and some low impact codegen changes (some FMA negatation propagation). We can build on this in future patches.
Differential Revision: https://reviews.llvm.org/D67557
llvm-svn: 372333
Much like ValueTypeByHwMode/RegInfoByHwMode, this patch allows targets
to modify an instruction's encoding based on HwMode. When the
EncodingInfos field is non-empty the Inst and Size fields of the Instruction
are ignored and taken from EncodingInfos instead.
As part of this promote getHwMode() from TargetSubtargetInfo to MCSubtargetInfo.
This is NFC for all existing targets - new code is generated only if targets
use EncodingByHwMode.
llvm-svn: 372320
As commented on D67557 we have a lot of uses of depth checks all using magic numbers.
This patch adds the SelectionDAG::MaxRecursionDepth constant and moves over some general cases to use this explicitly.
Differential Revision: https://reviews.llvm.org/D67711
llvm-svn: 372315
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
We needn't BFI each lane individually into a predicate register when each lane
in the same. A simple sign extend and a vmsr will do.
Differential Revision: https://reviews.llvm.org/D67653
llvm-svn: 372313
Errors that occur when reading an MRI script now include a corresponding
line number.
Differential Revision: https://reviews.llvm.org/D67449
llvm-svn: 372309
Add an ability to specify the max full unroll count for LoopUnrollPass pass
in pass options.
Reviewers: fhahn, fedor.sergeev
Reviewed By: fedor.sergeev
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D67701
llvm-svn: 372305
This needs special handling due to some subtargets that have a
nonstandard register layout for f16 vectors
Also reject some illegal types on other targets.
llvm-svn: 372293
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
Make the method MachOUniversalBinary::getObjectForArch return MachOUniversalBinary::ObjectForArch
and add helper methods MachOUniversalBinary::getMachOObjectForArch, MachOUniversalBinary::getArchiveForArch
for those who explicitly expect to get a MachOObjectFile or an Archive.
Differential revision: https://reviews.llvm.org/D67700
Test plan: make check-all
llvm-svn: 372278
update_{llc,mir}_test_checks.py applicability is determined by the
output (assembly or MIR), not the input, which makes
update_llc_test_checks.py the right tool to generate tests that start at
MIR and stop at the final assembly.
This commit adds the minimal support for this path. Main limitation that
remains:
- MIR has to have LLVM IR section, and the CHECK lines will be inserted
into the LLVM IR functions that correspond to the MIR functions.
Running
../utils/update_llc_test_checks.py --llc-binary ./bin/llc
on a slightly modified ../test/CodeGen/X86/bad-tls-fold.mir
produces the following diff:
+# NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
+# RUN: llc %s -o - | FileCheck %s
--- |
target triple = "x86_64-unknown-linux-gnu"
@@ -6,17 +7,31 @@
@i = external thread_local global i32
define i32 @or() {
+ ; CHECK-LABEL: or:
+ ; CHECK: # %bb.0: # %entry
+ ; CHECK-NEXT: movq {{.*}}(%rip), %rax
+ ; CHECK-NEXT: orq $7, %rax
+ ; CHECK-NEXT: movq i@{{.*}}(%rip), %rcx
+ ; CHECK-NEXT: orq %rax, %rcx
+ ; CHECK-NEXT: movl %fs:(%rcx), %eax
+ ; CHECK-NEXT: retq
entry:
ret i32 undef
}
-
define i32 @and() {
+ ; CHECK-LABEL: and:
+ ; CHECK: # %bb.0: # %entry
+ ; CHECK-NEXT: movq {{.*}}(%rip), %rax
+ ; CHECK-NEXT: orq $7, %rax
+ ; CHECK-NEXT: movq i@{{.*}}(%rip), %rcx
+ ; CHECK-NEXT: andq %rax, %rcx
+ ; CHECK-NEXT: movl %fs:(%rcx), %eax
+ ; CHECK-NEXT: retq
entry:
ret i32 undef
}
...
(not applied)
llvm-svn: 372277