1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-26 06:22:56 +02:00
Commit Graph

13 Commits

Author SHA1 Message Date
Reid Kleckner
45072b933e Rename llvm.frameescape and llvm.framerecover to localescape and localrecover
Summary:
Initially, these intrinsics seemed like part of a family of "frame"
related intrinsics, but now I think that's more confusing than helpful.
Initially, the LangRef specified that this would create a new kind of
allocation that would be allocated at a fixed offset from the frame
pointer (EBP/RBP). We ended up dropping that design, and leaving the
stack frame layout alone.

These intrinsics are really about sharing local stack allocations, not
frame pointers. I intend to go further and add an `llvm.localaddress()`
intrinsic that returns whatever register (EBP, ESI, ESP, RBX) is being
used to address locals, which should not be confused with the frame
pointer.

Naming suggestions at this point are welcome, I'm happy to re-run sed.

Reviewers: majnemer, nicholas

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D11011

llvm-svn: 241633
2015-07-07 22:25:32 +00:00
Philip Reames
4f4ed9b17b [Verifier] Verify invokes of intrinsics
We support invoking a subset of llvm's intrinsics, but the verifier didn't account for this.  We had previously added a special case to verify invokes of statepoints.  By generalizing the code in terms of CallSite, we can verify invokes of other intrinsics as well.  Interestingly, this found one test case which was invalid.

Note: I'm deliberately leaving the naming change from CI to CS to a follow up change.  That will happen shortly, I just wanted to reduce the diff to make it clear what was happening with this one.

Differential Revision: http://reviews.llvm.org/D10118

llvm-svn: 240836
2015-06-26 21:39:44 +00:00
David Majnemer
c8b1f095a3 Move the personality function from LandingPadInst to Function
The personality routine currently lives in the LandingPadInst.

This isn't desirable because:
- All LandingPadInsts in the same function must have the same
  personality routine.  This means that each LandingPadInst beyond the
  first has an operand which produces no additional information.

- There is ongoing work to introduce EH IR constructs other than
  LandingPadInst.  Moving the personality routine off of any one
  particular Instruction and onto the parent function seems a lot better
  than have N different places a personality function can sneak onto an
  exceptional function.

Differential Revision: http://reviews.llvm.org/D10429

llvm-svn: 239940
2015-06-17 20:52:32 +00:00
Andrew Kaylor
295660694e [WinEH] Update exception numbering to give handlers their own base state.
Differential Revision: http://reviews.llvm.org/D9512

llvm-svn: 237014
2015-05-11 19:41:19 +00:00
David Blaikie
2fcc0180e4 [opaque pointer type] Add textual IR support for explicit type parameter to the invoke instruction
Same as r235145 for the call instruction - the justification, tradeoffs,
etc are all the same. The conversion script worked the same without any
false negatives (after replacing 'call' with 'invoke').

llvm-svn: 235755
2015-04-24 19:32:54 +00:00
Andrew Kaylor
1ed92e06d5 [WinEH] Don't skip landing pads that end with an unreachable instruction.
llvm-svn: 235563
2015-04-23 00:20:44 +00:00
David Blaikie
dfadb4e9ee [opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
  if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
    return line
  return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
  sys.stdout.write(conv(re.search(pat, line), line))

llvm-svn: 235145
2015-04-16 23:24:18 +00:00
Reid Kleckner
9ab21ae989 [WinEH] Try to make the MachineFunction CFG more accurate
This avoids emitting code for unreachable landingpad blocks that contain
calls to llvm.eh.actions and indirectbr.

It's also a first step towards unifying the SEH and WinEH lowering
codepaths. I'm keeping the old fan-in lowering of SEH around until the
preparation version works well enough that we can switch over without
breaking existing users.

llvm-svn: 235037
2015-04-15 18:48:15 +00:00
David Majnemer
f0e072b4f9 [WinEH] Fill out CatchHigh in the TryBlockMap
Now all fields in the WinEH xdata have been filled out.

llvm-svn: 234067
2015-04-03 23:37:34 +00:00
David Majnemer
4a823b111e [WinEH] Fill out .xdata for catch objects
This add support for catching an exception such that an exception object
available to the catch handler will be initialized by the runtime.

llvm-svn: 234062
2015-04-03 22:49:05 +00:00
David Majnemer
694a466675 [WinEH] Sink UnwindHelp completely out of IR
We don't need to represent UnwindHelp in IR.  Instead, we can use the
knowledge that we are emitting the parent function to decide if we
should create the UnwindHelp stack object.

llvm-svn: 234061
2015-04-03 22:32:26 +00:00
Andrew Kaylor
cd70932cf9 [WinEH] Handle nested landing pads in outlined catch handlers
Differential Revision: http://reviews.llvm.org/D8596

llvm-svn: 234041
2015-04-03 19:37:50 +00:00
David Majnemer
e7ba02b466 [WinEH] Generate .xdata for catch handlers
This lets us catch exceptions in simple cases.

N.B. Things that do not work include (but are not limited to):
- Throwing from within a catch handler.
- Catching an object with a named catch parameter.
- 'CatchHigh' is fictitious, we aren't sure of its purpose.
- We aren't entirely efficient with regards to the number of EH states
  that we generate.
- IP-to-State tables are sensitive to the order of emission.

llvm-svn: 233767
2015-03-31 22:35:44 +00:00