The design of the PreservedCFG Checker (landed with the commit
28012e00d80b9) has a fundamental flaw which makes it incorrect.
The checker is based on the PreservedAnalyses result returned
by functional passes: if CFGAnalyses is in the returned
PreservedAnalyses set, then the checker asserts that the CFG
snapshot saved before the pass is equal to the CFG snapshot
taken after the the pass. The problem is in passes that change
CFG and invalidate CFGAnalyses on their own. Such passes do not
return CFGanalyses in the returned PreservedAnalyses. So the
checker mistakenly expects CFG unchanged. As an example see the
class TestSimplifyCFGInvalidatingAnalysisPass in the new tests.
It is interesting that the bug was not found in LLVM. That is
because the CFG checker ran only if CFGAnalyses was checked
incorrectly:
if (!PassPA.allAnalysesInSetPreserved<CFGAnalyses>())
return;
but must be checked as follows:
auto PAC = PA.getChecker<PreservedCFGCheckerAnalysis>();
if (!(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<Function>>() ||
PAC.preservedSet<CFGAnalyses>())
return;
A fully redesigned checker will be sent as a separate follow-up
patch.
Reviewed By: Serguei Katkov, Jakub Kuderski
Differential Revision: https://reviews.llvm.org/D91324
This patch adds a new matcher for single index InsertValue instructions,
similar to the existing matcher for ExtractValue.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D91352
This allows those instrumentation to log when they decide to skip a
pass. This provides extra helpful info for optnone functions and also
will help with opt-bisect.
Have OptNoneInstrumentation print when it skips due to seeing optnone.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D90545
Make DebugLogging a member variable so that users of PassBuilder don't
need to pass it around so much.
Move call to TargetMachine::registerPassBuilderCallbacks() within
PassBuilder so users don't need to remember to call it.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D90437
The support of a few debug info attributes specifically for Fortran
arrays have been added to LLVM recently, but there's no way to take
advantage of them through DIBuilder. This patch extends
DIBuilder::createArrayType to enable the settings of those attributes.
Patch by Chih-Ping Chen!
Differential Review: https://reviews.llvm.org/D90323
This is needed to support fortran assumed rank arrays which
have runtime rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF TAG
DW_TAG_generic_subrange is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89218
This reverts commit 5b3bf8b453b8cc00efd5269009a1e63c4442a30e.
This caused a regression in the ASan buildbot. See comments at
https://reviews.llvm.org/D89817 for more information.
The support of a few debug info attributes specifically for Fortran
arrays have been added to LLVM recently, but there's no way to take
advantage of them through DIBuilder. This patch extends
DIBuilder::createArrayType to enable the settings of those attributes.
Patch by Chih-Ping Chen!
Differential Revision: https://reviews.llvm.org/D89817
This adds matchers m_NonNaN, m_NonInf, m_Finite and m_NonZeroFP as well
as generic support for binding the matched value to an APFloat.
I tried to follow the existing convention of using an FP suffix for
predicates like zero and non-zero, which could be confused with the
integer versions, but not for predicates which are clearly already
FP-specific.
Differential Revision: https://reviews.llvm.org/D89038
Non-instruction defs like arguments, constants or global values
always dominate all instructions/uses inside the function. This
case currently needs to be treated separately by the caller, see
https://reviews.llvm.org/D89623#inline-832818 for an example.
This patch makes the dominator tree APIs accept a Value instead of
an Instruction and always returns true for the non-Instruction case.
A complication here is that BasicBlocks are also Values. For that
reason we can't support the dominates(Value *, BasicBlock *)
variant, as it would conflict with dominates(BasicBlock *, BasicBlock *),
which has different semantics. For the other two APIs we assert
that the passed value is not a BasicBlock.
Differential Revision: https://reviews.llvm.org/D89632
The EXPECT_XY comparison functions all rely upon using the existing
TypeSize comparison operators, which we are deprecating in favour
of isKnownXY. I've changed all such cases to compare either the known
minimum size or the fixed size.
Differential Revision: https://reviews.llvm.org/D89531
This patch adds support for DWARF attribute DW_AT_rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF attribute
DW_AT_rank is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89141
This removes "VerifyEachPass" parameters from a lot of functions which is nice.
Don't verify after special passes or VerifierPass.
This introduces verification on loop and cgscc passes, verifying the corresponding function/module.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D88764
After some recent upstream discussion we decided that it was best
to avoid having the / operator for both ElementCount and TypeSize,
since this could give the impression that these classes can be used
in the same way as basic integer integer types. However, division
for scalable types is a bit odd because we are only dividing the
minimum quantity by a value, as opposed to something like:
(MinSize * Vscale) / SomeValue
This is why when performing division it's important the caller
first establishes whether the operation makes sense, perhaps by
calling isKnownMultipleOf() prior to division. The caller must now
explictly call divideCoefficientBy() on the class to perform the
operation.
Differential Revision: https://reviews.llvm.org/D87700
Introduce a helper which can be used to update the debug location of an
Instruction after the instruction is hoisted. This can be used to safely
drop a source location as recommended by the docs.
For more context, see the discussion in https://reviews.llvm.org/D60913.
Differential Revision: https://reviews.llvm.org/D85670
I have long complained that while we have exhaustive tests
for ConstantRange, they are, uh, not good.
The approach of groking our own constant range
via exhaustive enumeration is, mysterious.
It neither tells us without doubt that the result is
conservatively correct, nor the precise match to the ConstantRange
result tells us that the result is precise.
But yeah, it's fast, i give it that.
In short, there are three things that we need to check:
1. That ConstantRange result is conservatively correct
2. That ConstantRange range is reasonable
3. That ConstantRange result is reasonably precise
So let's not just check the middle one, but all three.
This provides precision test coverage for D88178.
This is in preparation for supporting -debugify-each, which adds a debug
info pass before and after each pass.
Switch VerifyEach to use this.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D88107
Similar to the ConstantRange::getActiveBits(), and to similarly-named
methods in APInt, returns the bitwidth needed to represent
the given signed constant range
Much like APInt::getActiveBits(), computes how many bits are needed
to be able to represent every value in this constant range,
treating the values as unsigned.
Use the fact that `~X` is equivalent to `-1 - X`, which gives us
fully-precise answer, and we only need to special-handle the wrapped case.
This fires ~16k times for vanilla llvm test-suite + RawSpeed.
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
Both AfterPass and AfterPassInvalidated pass instrumentation
callbacks get additional parameter of type PreservedAnalyses.
This patch was created by @fedor.sergeev. I have just slightly
changed it.
Reviewers: fedor.sergeev
Differential Revision: https://reviews.llvm.org/D81555
The current demand propagator for addition will mark all input bits at and right of the alive output bit as alive. But carry won't propagate beyond a bit for which both operands are zero (or one/zero in the case of subtraction) so a more accurate answer is possible given known bits.
I derived a propagator by working through truth tables and using a bit-reversed addition to make demand ripple to the right, but I'm not sure how to make a convincing argument for its correctness in the comments yet. Nevertheless, here's a minimal implementation and test to get feedback.
This would help in a situation where, for example, four bytes (<128) packed into an int are added with four others SIMD-style but only one of the four results is actually read.
Known A: 0_______0_______0_______0_______
Known B: 0_______0_______0_______0_______
AOut: 00000000001000000000000000000000
AB, current: 00000000001111111111111111111111
AB, patch: 00000000001111111000000000000000
Committed on behalf of: @rrika (Erika)
Differential Revision: https://reviews.llvm.org/D72423
Introduce a helper on Instruction which can be used to update the debug
location after hoisting.
Use this in GVN and LICM, where we were mistakenly introducing new line
0 locations after hoisting (the docs recommend dropping the location in
this case).
For more context, see the discussion in https://reviews.llvm.org/D60913.
Differential Revision: https://reviews.llvm.org/D85670
I skimmed the existing users of these matchers and don't see any problems
(eg, the caller assumes the matched value was a select instruction without checking).
So I think we can generalize the matching to allow the new intrinsics or the cmp+select idioms.
I did not find any unit tests for the matchers, so added some basics there. The instsimplify
tests are adapted from existing tests for the cmp+select pattern and cover the folds in
simplifyICmpWithMinMax().
Differential Revision: https://reviews.llvm.org/D85230
The strictfp attribute is required on all function calls in a function
that is itself marked with the strictfp attribute. The IRBuilder knows
this and has a method for adding the attribute to function call instructions.
If a function being called has the strictfp attribute itself then the
IRBuilder will refuse to add the attribute to the calling instruction
despite being asked to add it. Eliminate this error.
Differential Revision: https://reviews.llvm.org/D84878
TODO
* PrintIRInstrumentation and TimePassesHandler would be using this new callback.
* "Running pass" logging will also be moved to use this callback.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D84772
Summary:
Try not to resize vector of call records in a call graph node when
replacing call edge. That would prevent invalidation of iterators
stored in the CG SCC pass manager's scc_iterator.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D84295
Summary:
This support is needed for the Fortran array variables with pointer/allocatable
attribute. This support enables debugger to identify the status of variable
whether that is currently allocated/associated.
for pointer array (before allocation/association)
without DW_AT_associated
(gdb) pt ptr
type = integer (140737345375288:140737354129776)
(gdb) p ptr
value requires 35017956 bytes, which is more than max-value-size
with DW_AT_associated
(gdb) pt ptr
type = integer (:)
(gdb) p ptr
$1 = <not associated>
for allocatable array (before allocation)
without DW_AT_allocated
(gdb) pt arr
type = integer (140737345375288:140737354129776)
(gdb) p arr
value requires 35017956 bytes, which is more than max-value-size
with DW_AT_allocated
(gdb) pt arr
type = integer, allocatable (:)
(gdb) p arr
$1 = <not allocated>
Testing
- unit test cases added
- check-llvm
- check-debuginfo
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83544
A pass declares itself unskippable by defining a method `static bool isRequired()`.
Also, this patch makes pass managers and adaptor passes required (unskippable).
PassInstrumentation before-pass-callbacks could be used to skip passes by returning false.
However, some passes should not be skipped at all. Especially so for special-purpose passes such as pass managers and adaptor passes since if they are skipped for any reason, the passes contained by them would also be skipped ignoring contained passes's return value of `isRequired()`.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D82344
The approach is simple: if a pass reports that it's not modifying a
Function/Module, compute a loose hash of that Function/Module and compare it
with the original one. If we report no change but there's a hash change, then we
have an error.
This approach misses a lot of change but it's not super intrusive and can
detect most of the simple mistakes.
Differential Revision: https://reviews.llvm.org/D80916
The approach is simple: if a pass reports that it's not modifying a
Function/Module, compute a loose hash of that Function/Module and compare it
with the original one. If we report no change but there's a hash change, then we
have an error.
This approach misses a lot of change but it's not super intrusive and can
detect most of the simple mistakes.
Differential Revision: https://reviews.llvm.org/D80916
Summary:
Make Constant::getSplatValue recognize scalable vector splats of the
form created by ConstantVector::getSplat. Add unit test to verify that
C == ConstantVector::getSplat(C)->getSplatValue() for fixed width and
scalable vector splats
Reviewers: efriedma, spatel, fpetrogalli, c-rhodes
Reviewed By: efriedma
Subscribers: sdesmalen, tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82416