This implements the following combines:
((0-A) + B) -> B-A
(A + (0-B)) -> A-B
Porting over the basic algebraic combines from the DAGCombiner. There are
several combines which fold adds away into subtracts. This is just the simplest
one.
I noticed that add combines are some of the most commonly hit across CTMark,
(via print statements when they fire), so I'm porting over some of the obvious
ones.
This gives some minor code size improvements on CTMark at -O3 on AArch64.
Differential Revision: https://reviews.llvm.org/D77453
Put AND before ADD in LegalizerHelper::lowerFPTRUNC_F64_TO_F16
in order to match algorithm from AMDGPUTargetLowering::LowerFP_TO_FP16.
Differential Revision: https://reviews.llvm.org/D81666
Summary:
Fix crash when using -debug caused by the GlobalISel observer trying to print
an incomplete DBG_VALUE instruction. This was caused by the MachineIRBuilder
using buildInstr, which immediately inserts the instruction causing print,
instead of using BuildMI to first build up the instruction and using
insertInstr when finished.
Add RUN-line to existing debug-insts.ll test with -debug flag set to make sure
no crash is happening.
Also fixed a missing %s in the 2nd RUN-line of the same test.
Reviewers: t.p.northover, aditya_nandakumar, aemerson, dsanders, arsenm
Reviewed By: arsenm
Subscribers: wdng, arsenm, rovka, hiraditya, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76934
If the target explicitly requested custom legalization, it should be
required to implement this. Also move default legalizeIntrinsic
implementation into the header so it's next to the related
legalizeCustom.
It was annoying enough that every custom lowering needed to set the
insert point, but this was made worse since now these all needed to be
updated to setInstrAndDebugLoc. Consolidate these so every
legalization action has the right insert position by default.
This should fix dropping debug info in every custom AMDGPU
legalization.
The current relationship between LegalizerHelper and MachineIRBuilder
confuses me, because the LegalizerHelper modifies the MachineIRBuilder
which it does not own. Constructing a LegalizerHelper destroys the
insert point, since the constructor calls setMF, which clears all the
fields. Try to separate these functions, so it's possible to construct
a LegalizerHelper from an existing MachineIRBuilder without losing the
insert point/debug loc.
The construction APIs for MachineIRBuilder don't make much sense, and
it's been annoying to sort through it with these trivial functions
separate from the declaration.
New instructions were getting printed both in createdInstr, and in the
final printNewInstrs, so it made it look like the same instructions
were created twice. This overall made reading the debug output
harder. Stop printing the initial construction and only print new
instructions in the summary at the end. This avoids printing the less
useful case where instructions are sometimes initially created with no
operands.
I'm not sure this is the correct instance to remove; now the visible
ordering is different. Now you will typically see the one erased
instruction message before all the new instructions in order. I think
this is the more logical view of typical legalization changes,
although it's mechanically backwards from the normal
insert-new-erase-old pattern.
Summary:
Note to downstream target maintainers: this might silently change the semantics of your code if you override `TargetLowering::allowsMisalignedMemoryAccesses` without marking it override.
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81374
Just computing the alignment makes sense without caring about the
general known bits, such as for non-integral pointers. Separate the
two and start calling into the TargetLowering hooks for frame indexes.
Start calling the TargetLowering implementation for FrameIndexes,
which improves the AMDGPU matching for stack addressing modes. Also
introduce a new hook for returning known alignment of target
instructions. For AMDGPU, it would be useful to report the known
alignment implied by certain intrinsic calls.
Also stop using MaybeAlign.
The AMDGPU lowering for unconstrained G_FDIV sometimes needs to
introduce a mode switch in the middle, so it's helpful to have
constrained instructions available to legalize this. Right now nothing
is preventing reordering of the mode switch with the other
instructions in the expansion.
I inverted the mask when I ported to the new form of G_PTRMASK in
8bc03d2168241f7b12265e9cd7e4eb7655709f34.
I don't think this really broke anything, since G_VASTART isn't
handled for types with an alignment higher than the stack alignment.
During legalization we can end up with extends of loads, which in the case of
zexts causes us to not hit tablegen imported patterns.
The caveat here is that we don't want anyext load forming, since some variants
are illegal. This change also prevents the combine from creating any illegal
loads.
Differential Revision: https://reviews.llvm.org/D80458
I get confused by a lot of the predicate names here, since I would
assume they apply to vectors as well. Rename to reflect they only
apply to scalars.
Also add a few predicates AMDGPU uses that should be generally useful.
Also add any() to complement all. I've wanted to use this a few times
but then worked around it not being there.
If we have a memory instruction (e.g. a load), we shouldn't combine it away in
some trivial combine.
It's possible that, say, a call lives between the instructions. This could
modify the value loaded, making the load instructions not safe to fold.
Differential Revision: https://reviews.llvm.org/D80053
Summary:
Previously, we only added early-clobber flags to the 'group' immediate flag operand
of an inline asm operand.
However, we also have to add the EarlyClobber flag to the MachineOperand itself.
This fixes PR46028
Reviewers: arsenm, leonardchan
Reviewed By: arsenm, leonardchan
Subscribers: phosek, wdng, rovka, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80467
Confusingly, these were unrelated and had different semantics. The
G_PTR_MASK instruction predates the llvm.ptrmask intrinsic, but has a
different format. G_PTR_MASK only allows clearing the low bits of a
pointer, and only a constant number of bits. The ptrmask intrinsic
allows an arbitrary mask. Replace G_PTR_MASK to match the intrinsic.
Only selects the cases that look like the old instruction. More work
is needed to select the general case. Also new legalization code is
still needed to deal with the case where the incoming mask size does
not match the pointer size, which has a specified behavior in the
langref.
Replace with forward declaration and move dependency down to source files that actually need it.
Both TargetLowering.h and TargetMachine.h are 2 of the most expensive headers (top 10) in the ClangBuildAnalyzer report when building llc.
If the caller needs to reponsible for making sure the MaybeAlign
has a value, then we should just make the caller convert it to an Align
with operator*.
I explicitly deleted the relational comparison operators that
were being inherited from Optional. It's unclear what the meaning
of two MaybeAligns were one is defined and the other isn't
should be. So make the caller reponsible for defining the behavior.
I left the ==/!= operators from Optional. But now that exposed a
weird quirk that ==/!= between Align and MaybeAlign required the
MaybeAlign to be defined. But now we use the operator== from
Optional that takes an Optional and the Value.
Differential Revision: https://reviews.llvm.org/D80455
(This patch is by Jessica, I'm just committing it on her behalf because I need
a post-legalizer combiner for something else).
This supersedes D77250, which did equivalent work in the selector. This can be
done pre-legalization or post-legalization. Post-legalization is more likely to
hit, since G_IMPLICIT_DEFs tend to appear during legalization. There's no reason
to not do it pre-legalization though-- if it can be caught earlier, great.
(I also think that it might be worth reimplementing D78769 using a
target-specific post-legalization combine too after thinking about it for a
while.)
Differential Revision: https://reviews.llvm.org/D78852
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
This was looking for a compare condition, and copying the compare
flags. I don't think this was ever correct outside of certain min/max
patterns which aren't checked, but this probably predates select
instructions having fast math flags.
Now that load/store alignment is required, we no longer need most
of them. Also switch the getLoadStoreAlignment() helper to return
Align instead of MaybeAlign.
Along the lines of D77454 and D79968. Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.
Differential Revision: https://reviews.llvm.org/D80044
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
Summary:
D78319 introduced basic support for inline asm input operands in GlobalISel.
However, that patch did not handle the case where a memory input operand still needs to
be indirectified. Later code asserts that the memory operand is already indirect.
This patch adds an early return false to trigger the SelectionDAG fallback for now.
Reviewers: arsenm, paquette
Reviewed By: arsenm
Subscribers: thakis, wdng, rovka, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79955
Summary:
D78319 introduced basic support for inline asm input operands in GlobalISel.
However, that patch did not handle the case where a memory input operand still needs to
be indirectified. Later code asserts that the memory operand is already indirect.
This patch adds an early return false to trigger the SelectionDAG fallback for now.
Reviewers: arsenm, paquette
Reviewed By: arsenm
Subscribers: wdng, rovka, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79955
Summary:
ConstantExprs involving operations on <1 x Ty> could translate into MIR
that failed to verify with:
*** Bad machine code: Reading virtual register without a def ***
The problem was that translate(const Constant &C, Register Reg) had
recursive calls that passed the same Reg in for the translation of a
subexpression, but without updating VMap for the subexpression first as
translate(const Constant &C, Register Reg) expects.
Fix this by using the same translateCopy helper function that we use for
translating Instructions. In some cases this causes extra G_COPY
MIR instructions to be generated.
Fixes https://bugs.llvm.org/show_bug.cgi?id=45576
Reviewers: arsenm, volkan, t.p.northover, aditya_nandakumar
Subscribers: jvesely, wdng, nhaehnle, rovka, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78378