patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
Use debug info in the IR to find the directory/file:line:col. Each time that location changes, bump a counter.
Unlike the existing profiling system, we don't try to look at argv[], and thusly don't require main() to be present in the IR. This matches GCC's technique where you specify the profiling flag when producing each .o file.
The runtime library is minimal, currently just calling printf at program shutdown time. The API is designed to make it possible to emit GCOV data later on.
llvm-svn: 129340
Modified patch by Adam Preuss.
This builds on the existing framework for block tracing, edge profiling and optimal edge profiling.
See -help-hidden for new flags.
For documentation, see the technical report "Implementation of Path Profiling..." in llvm.org/pubs.
llvm-svn: 124515
it could only be tested indirectly, via instcombine, gvn or some other
pass that makes use of InstructionSimplify, which means that testcases
had to be carefully contrived to dance around any other transformations
that that pass did.
llvm-svn: 122264
The RegionInfo pass detects single entry single exit regions in a function,
where a region is defined as any subgraph that is connected to the remaining
graph at only two spots.
Furthermore an hierarchical region tree is built.
Use it by calling "opt -regions analyze" or "opt -view-regions".
llvm-svn: 109089
such a way that debug info for symbols preserved even if symbols are
optimized away by the optimizer.
Add new special pass to remove debug info for such symbols.
llvm-svn: 107416
Initial skeleton and SCEVUnknown lowering implemented,
the rest should come relatively quickly. Move testcase
to new directory.
Move pass to right before SimplifyLibCalls - which is
moved down a bit so we can take advantage of a few opts.
llvm-svn: 95628
Checks on Demand algorithm which looks at arbitrary branches instead of loop
iterations. This is GSoC work by Andre Tavares with only editorial changes
applied!
llvm-svn: 85382
GEPs (more than one non-zero index) into simple GEPs (at most one
non-zero index). In some simple experiments using this it's not
uncommon to see 3% overall code size wins, because it exposes
redundancies that can be eliminated, however it's tricky to use
because instcombine aggressively undoes the work that this pass does.
llvm-svn: 85144