question, can we get rid of the BasicBlock versions of all inserters
and use Head == 0 to indicate the old case when GetInsertBlock == 0?
llvm-svn: 83216
to emit target-specific things at the beginning of the asm output. This
fixes a problem for PPC, where the text sections are not being kept together
as expected. The base class doInitialization code calls DW->BeginModule()
which emits a bunch of DWARF section directives. The PPC doInitialization
code then emits all the TEXT section directives, with the intention that they
will be kept together. But as I understand it, the Darwin assembler treats
the default TEXT section as a special case and moves it to the beginning of
the file, which means that all those DWARF sections are in the middle of
the text. With this change, the EmitStartOfAsmFile hook is called before
the DWARF section directives are emitted, so that all the PPC text section
directives come out right at the beginning of the file.
llvm-svn: 83176
basic blocks that are so long that their size overflows a short.
Also assert that overflow does not happen in the future, as requested by Evan.
This fixes PR4401.
llvm-svn: 83159
By the way, this code is buggy. You can't keep a map<MDNode *, something>
because the MDNode may be destroyed and reused for something else.
llvm-svn: 83141
section directives. This causes the assembler to put the text sections at
the beginning of the object file, which helps work around a limitation of the
Darwin ARM relocations. Radar 7255355.
llvm-svn: 83127
information. This allows arbitrary code involving DW_OP_plus_uconst
and DW_OP_deref. The scheme allows for easy extention to include,
any, or all of the DW_OP_ opcodes. I thought about just exposing all
of them, but, wasn't sure if people wanted the dwarf opcodes exposed
in the api. Is that a layering violation?
With this scheme, the entire existing block scheme used by llvm-gcc
can be switched over to the new scheme. I think that would be
cleaner, as then the compiler specific bits are not present in llvm
proper. Before the old code can be yanked however, similar code in
clang would have to be removed.
Next up, more testing.
llvm-svn: 83120
unused DECLARE instruction.
KILL is not yet used anywhere, it will replace TargetInstrInfo::IMPLICIT_DEF
in the places where IMPLICIT_DEF is just used to alter liveness of physical
registers.
llvm-svn: 83006
instruction. This makes it re-materializable.
Thumb2 will split it back out into two instructions so IT pass will generate the
right mask. Also, this expose opportunies to optimize the movw to a 16-bit move.
llvm-svn: 82982
physical registers. This is especially critical for the later two since they
start the live interval of a super-register. e.g.
%DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
If this instruction is eliminated, the register scavenger will not be happy as
D0 is not defined previously.
This fixes PR5055.
llvm-svn: 82968
the PassManager code into a regular verifyAnalysis method.
Also, reorganize loop verification. Make the LoopPass infrastructure
call verifyLoop as needed instead of having LoopInfo::verifyAnalysis
check every loop in the function after each looop pass. Add a new
command-line argument, -verify-loop-info, to enable the expensive
full checking.
llvm-svn: 82952
code that stops the timer doesn't have to search to find the timer
object before it stops the timer. This avoids a lock acquisition
and a few other things done with the timer running.
llvm-svn: 82949
LoopPasses for that loop. This avoids trouble with the PassManager
trying to call verifyAnalysis on them, and frees up some memory
sooner rather than later.
llvm-svn: 82945
used to support GlobalVariables storing MDNodes, back when they were derived
from Constant before the introduction of NamedMDNode, but never removed.
llvm-svn: 82943
that are phi nodes. Also tighten up FoldOpIntoPhi to treat constantexpr
operands to phis just like other variables, avoiding moving constantexpr
computations around.
Patch by Daniel Dunbar.
llvm-svn: 82913
aren't in canonical loop-simplify form, since it doesn't itself depend
on LoopSimplify. This means handling loops without preheaders and loops
with multiple backedges.
llvm-svn: 82905
test whether it properly dominates the loop header. This is equivalent
when the loop has a preheader, and has the advantage of working when
the loop doesn't have a preheader. Since IVUsers doesn't Require
LoopSimplify, the loop isn't guaranteed to have a preheader.
llvm-svn: 82899
which have no defs anywhere in the function. In particular, this fixes sinking
of instructions that reference RIP on x86-64, which is currently being modeled
as a register.
llvm-svn: 82815
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
llvm-svn: 82794
naming scheme used in SelectionDAG, where there are multiple kinds
of "target" nodes, but "machine" nodes are nodes which represent
a MachineInstr.
llvm-svn: 82790
allows appropriate backends to generate a sqrt instruction.
On x86, this isn't done at -O0 because we go through
FastISel instead. This is a behavior change from before
this series of sqrt patches started. I think this is OK
considering that compile speed is most important at -O0, but
could be convinced otherwise.
llvm-svn: 82778
For the AAPCS ABI, SP must always be 4-byte aligned, and at any "public
interface" it must be 8-byte aligned. For the older ARM APCS ABI, the stack
alignment is just always 4 bytes. For X86, we currently align SP at
entry to a function (e.g., to 16 bytes for Darwin), but no stack alignment
is needed at other times, such as for a leaf function.
After discussing this with Dan, I decided to go with the approach of adding
a new "TransientStackAlignment" field to TargetFrameInfo. This value
specifies the stack alignment that must be maintained even in between calls.
It defaults to 1 except for ARM, where it is 4. (Some other targets may
also want to set this if they have similar stack requirements. It's not
currently required for PPC because it sets targetHandlesStackFrameRounding
and handles the alignment in target-specific code.) The existing StackAlignment
value specifies the alignment upon entry to a function, which is how we've
been using it anyway.
llvm-svn: 82767
interest for this, as it currently reserves a register rather than using
the scavenger for matierializing constants as needed.
Instead of scavenging registers on the fly while eliminating frame indices,
new virtual registers are created, and then a scavenged collectively in a
post-pass over the function. This isolates the bits that need to interact
with the scavenger, and sets the stage for more intelligent use, and reuse,
of scavenged registers.
For the time being, this is disabled by default. Once the bugs are worked out,
the current scavenging calls in replaceFrameIndices() will be removed and
the post-pass scavenging will be the default. Until then,
-enable-frame-index-scavenging enables the new code. Currently, only the
Thumb1 back end is set up to use it.
llvm-svn: 82734
LocalAreaOffset. (We don't have any of those right now.)
PEI::calculateFrameObjectOffsets includes the absolute value of the
LocalAreaOffset in the cumulative offset value used to calculate the
stack frame size. It then adds the raw value of the LocalAreaOffset
to the stack size. For a StackGrowsDown target, that raw value is negative
and has the effect of cancelling out the absolute value that was added
earlier, but that obviously won't work for a StackGrowsUp target. Change
to subtract the absolute value of the LocalAreaOffset.
llvm-svn: 82693
LiveVariables add implicit kills to correctly track partial register kills. This works well enough and is fairly accurate. But coalescer can make it impossible to maintain these markers. e.g.
BL <ga:sss1>, %R0<kill,undef>, %S0<kill>, %R0<imp-def>, %R1<imp-def,dead>, %R2<imp-def,dead>, %R3<imp-def,dead>, %R12<imp-def,dead>, %LR<imp-def,dead>, %D0<imp-def>, ...
...
%reg1031<def> = FLDS <cp#1>, 0, 14, %reg0, Mem:LD4[ConstantPool]
...
%S0<def> = FCPYS %reg1031<kill>, 14, %reg0, %D0<imp-use,kill>
When reg1031 and S0 are coalesced, the copy (FCPYS) will be eliminated the the implicit-kill of D0 is lost. In this case it's possible to move the marker to the FLDS. But in many cases, this is not possible. Suppose
%reg1031<def> = FOO <cp#1>, %D0<imp-def>
...
%S0<def> = FCPYS %reg1031<kill>, 14, %reg0, %D0<imp-use,kill>
When FCPYS goes away, the definition of S0 is the "FOO" instruction. However, transferring the D0 implicit-kill to FOO doesn't work since it is the def of D0 itself. We need to fix this in another time by introducing a "kill" pseudo instruction to track liveness.
Disabling the assertion is not ideal, but machine verifier is doing that job now. It's important to know double-def is not a miscomputation since it means a register should be free but it's not tracked as free. It's a performance issue instead.
llvm-svn: 82677
The machine code verifier did not check for explicit operands correctly. It
used MachineInstr::getNumExplicitOperands, but that method may cheat and use
the declared count in the TargetInstrDesc.
Now we check the explicit operands one at a time in visitMachineOperand.
llvm-svn: 82652
default implementation. Update comment on the default version, which made it
sound like most targets override it. Currently only X86 and SystemZ override
this method.
llvm-svn: 82651
of the defs are processed.
Also fix a implicit_def propagation bug: a implicit_def of a physical register
should be applied to uses of the sub-registers.
llvm-svn: 82616
two different places for printing MachineMemOperands.
Drop the virtual from Value::dump and instead give Value a
protected virtual hook that can be overridden by subclasses
to implement custom printing. This lets printing be more
consistent, and simplifies printing of PseudoSourceValue
values.
llvm-svn: 82599
- This also fixes a dereference of std::string::end, which makes MSVC unhappy and was causing all the static analyzer clang tests to fail.
llvm-svn: 82517
static const class member into each translation unit, with external linkage???
- If someone understands this issue better, please clue me in, I haven't
consulted the standard yet.
llvm-svn: 82516
This is designed for tracking a value even when it might move (like WeakVH), but it is an error to delete the referenced value (unlike WeakVH0. TrackingVH is templated like AssertingVH on the tracked Value subclass, it is an error to RAUW a tracked value to an incompatible type.
For implementation reasons the latter error is only diagnosed on accesses to a mis-RAUWed TrackingVH, because we don't want a virtual interface in a templated class.
The former error is also only diagnosed on access, so that clients are allowed to delete a tracked value, as long as they don't use it. This makes it easier for the client to reason about destruction.
llvm-svn: 82506
%S0<def> = EXTRACT_SUBREG %Q0<kill>, 1
to
%S0<def> = IMPLICIT_DEF %Q0<imp-use,kill>
Implicit_def does not *read* any register so the operand should be marked "implicit". The missing "implicit" marker on the operand is wrong, but it doesn't actually break anything.
llvm-svn: 82503
take into consideration that the result of an invoke is only valid in
the normal dest, not the unwind dest. This caused 'PHINode::hasConstantValue'
to return true in an invalid situation, causing mem2reg to delete a phi that
was actually needed. This caused a crash building 483.xalancbmk.
llvm-svn: 82491