MachOLinkGraphBuilder has been treating these as hidden, but they should be
treated as local.
Symbols with N_PEXT set and N_EXT unset are produced when hidden symbols are
run through 'ld -r' without passing -keep_private_externs. They will show up
under 'nm -m' as "was private extern", hence the name of the test cases.
Testcase commited as relocatable object to ensure that the test suite doesn't
depend on having 'ld -r' available.
Correctly sign extend the addend, and fix implicit shift operand decoding
(it incorrectly returned 0 for some cases), and check that the initial
encoded immediate is 0.
The -phony-externals option adds a generator which explicitly defines any
otherwise unresolved externals as null. This transforms link-time
unresolved-symbol errors into potential runtime null pointer accesses
(if an unresolved external is actually accessed during execution).
This option can be useful in -harness mode to avoid having to mock a
large number of symbols that are not reachable at runtime (e.g. unused
methods referenced by a class vtable).
This prevents weak symbols from being immediately dead-stripped when not
directly referenced from the test harneess, enabling use of weak symbols
from the code under test.
The -harness option enables new testing use-cases for llvm-jitlink. It takes a
list of objects to treat as a test harness for any regular objects passed to
llvm-jitlink.
If any files are passed using the -harness option then the following
transformations are applied to all other files:
(1) Symbols definitions that are referenced by the harness files are promoted
to default scope. (This enables access to statics from test harness).
(2) Symbols definitions that clash with definitions in the harness files are
deleted. (This enables interposition by test harness).
(3) All other definitions in regular files are demoted to local scope.
(This causes untested code to be dead stripped, reducing memory cost and
eliminating spurious unresolved symbol errors from untested code).
These transformations allow the harness files to reference and interpose
symbols in the regular object files, which can be used to support execution
tests (including fuzz tests) of functions in relocatable objects produced by a
build.
When processing a MachO SUBTRACTOR/UNSIGNED pair, if the UNSIGNED target
is non-extern then check the r_symbolnum field of the relocation to find
the targeted section and use the section's address to find 'ToSymbol'.
Previously 'ToSymbol' was found by loading the initial value stored at
the fixup location and treating this as an address to search for. This
is incorrect, however: the initial value includes the addend and will
point to the wrong block if the addend is less than zero or greater than
the block size.
rdar://65756694
Summary: This adds the basic support for GOT in elf x86.
Was able to just get away using the macho code by generalising the edges.
There will be a follow up patch to turn that into a generic utility for both of the x86 and Mach-O code.
This patch also lands support for relocations relative to symbol.
Reviewers: lhames
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83748
This relaxes an assertion that required symbols to start before the end
of a block. Instead, symbols are now required to end on or before the
end of a block. This fixes two important corner cases: Symbols at the
start of empty blocks/sections, and block/section end symbols.
If a symbol name begins with the linker private global prefix (as
described by the DataLayout) then it should be treated as non-exported,
regardless of its LLVM IR visibility value.
Debug sections will not be linked into the final executable and may contain
ambiguous relocations*. Skipping them avoids both some unnecessary processing
cost and the hassle of dealing with the problematic relocations.
* E.g. __debug_ranges contains non-extern relocations to the end of functions
hat begin with named symbols. Under the usual rules for interpreting non-extern
relocations these will be incorrectly associated with the following block, or
no block at all (if there is a gap between one block and the next).
Summary:
Adding in our first relocation type, and all the required plumbing to support the rest in following patches
Differential Revision: https://reviews.llvm.org/D80613
Reviewer: lhames
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
This initial implementation supports section and symbol parsing, but no
relocation support. It enables JITLink to link and execute ELF relocatable
objects that do not require relocations.
Patch by Jared Wyles. Thanks Jared!
Differential Revision: https://reviews.llvm.org/D79832
ExecutionEngine/MCJIT/cet-code-model-lager.ll is failing on 32-bit
windows, see llvm-commits thread for fef2dab.
This reverts commit 43f031d31264d20cfb8f1ebd606c66e57c231d4d
and the follow-ups fef2dab100dfc7c49ccf0ce2bacea409324b54ba and
6a800f6f622a7ade275fa6cb1ef07803460d8bb3.
It was failing in 32-bit Windows builds with:
$ ":" "RUN: at line 1"
$ "c:\src\llvm_package_944db8a4\build32_stage0\bin\lli.exe" "-mtriple=i686-pc-windows-msvc-elf" "-code-model=large" "C:\src\llvm_package_944db8a4\llvm-project\llvm\test\ExecutionEngine\MCJIT\cet-code-model-lager.ll"
# command stderr:
Assertion failed: Is64Bit && "Large code model is only legal in 64-bit mode.", file C:\src\llvm_package_944db8a4\llvm-project\llvm\lib\Target\X86\X86ISelLowering.cpp, line 4212
Let's see if this helps.
Add a new overload of StaticLibraryDefinitionGenerator::Load that takes a triple
argument and supports loading archives from MachO universal binaries in addition
to regular archives.
The LLI tool is updated to use this overload.
Summary:
This patch comes from H.J.'s 2bd54ce7fa
**This patch fix the failed llvm unit tests which running on CET machine. **(e.g. ExecutionEngine/MCJIT/MCJITTests)
The reason we enable IBT at "JIT compiled with CET" is mainly that: the JIT don't know the its caller program is CET enable or not.
If JIT's caller program is non-CET, it is no problem JIT generate CET code or not.
But if JIT's caller program is CET enabled, JIT must generate CET code or it will cause Control protection exceptions.
I have test the patch at llvm-unit-test and llvm-test-suite at CET machine. It passed.
and H.J. also test it at building and running VNCserver(Virtual Network Console), it works too.
(if not apply this patch, VNCserver will crash at CET machine.)
Reviewers: hjl.tools, craig.topper, LuoYuanke, annita.zhang, pengfei
Subscribers: tstellar, efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76900
Failure to export __cxa_atexit can lead to an attempt to import a definition
from the process itself (if __cxa_atexit is referenced from another JITDylib),
but the process definition will clash with the existing non-exported definition
to produce an unexpected DuplicateDefinitionError.
This patch fixes the immediate issue by exporting __cxa_atexit. It also fixes a
bug where atexit functions in other JITDylibs were not being run by adding a
copy of run_atexits_helper to every JITDylib.
A follow up patch will deal with the bug where definition generators are called
despite a non-exported definition being present.
The MemoryBuffer::getMemBuffer method's RequiresNullTerminator parameter
defaults to true, but object files are not null terminated so we need to
explicitly pass false here.
Global symbols with linker-private prefixes should be resolvable across object
boundaries, but internal symbols with linker-private prefixes should not.
This patch enables exception handling in code added to LLJIT on Darwin by
adding an orc::EHFrameRegistrationPlugin instance to the ObjectLinkingLayer
(which is currently used on Darwin only).
Summary:
Enables JIT-linking by RuntimeDyld of COFF objects that contain references to
dllimport symbols. This is done by recognizing symbols that start with the
reserved "__imp_" prefix and building a pointer entry to the target symbol in
the stubs area of the section. References to the "__imp_" symbol are updated to
point to this pointer.
Work in progress: The generic code is in place, but only RuntimeDyldCOFFX86_64
and RuntimeDyldCOFFI386 have been updated to look for and update references to
dllimport symbols.
Reviewers: compnerd
Subscribers: hiraditya, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75884
This option can be used to for JITLink to link as-if the target memory slab were
allocated at a specific start address. This can be used to both verify that
cross-address space linking is working correctly, and to ensure that certain
address-sensitive optimizations (e.g. GOT and stub elimination) either do or do
not fire, depending on the requirements of the test case.
This argument is only valid for testing in conjunction with -noexec -slab-alloc,
and will produce an error if used without those arguments.
This optimization bypasses GOT loads and calls/branches through stubs when the
ultimate target of the access/branch is found to be within range of the
reference.
Extra debugging output is also added to the generic JITLink algorithm and
basic GOT and Stubs builder utility to aid debugging.
The GenericLLVMIRPlatformSupport class runs a transform on all LLVM IR added to
the LLJIT instance to replace instances of llvm.global_ctors with a specially
named function that runs the corresponing static initializers (See
(GlobalCtorDtorScraper from lib/ExecutionEngine/Orc/LLJIT.cpp). This patch
updates the GenericIRPlatform class to check for this specially named function
in other materialization units that are added to the JIT and, if found, add
the function to the initializer work queue. Doing this allows object files
that were compiled from IR and cached to be reloaded in subsequent JIT sessions
without their initializers being skipped.
To enable testing this patch also updates the lli tool's -jit-kind=orc-lazy mode
to respect the -enable-cache-manager and -object-cache-dir options, and modifies
the CompileOnDemandLayer to rename extracted submodules to include a hash of the
names of their symbol definitions. This allows a simple object caching scheme
based on module names (which was already implemented in lli) to work with the
lazy JIT.
Initializers and deinitializers are used to implement C++ static constructors
and destructors, runtime registration for some languages (e.g. with the
Objective-C runtime for Objective-C/C++ code) and other tasks that would
typically be performed when a shared-object/dylib is loaded or unloaded by a
statically compiled program.
MCJIT and ORC have historically provided limited support for discovering and
running initializers/deinitializers by scanning the llvm.global_ctors and
llvm.global_dtors variables and recording the functions to be run. This approach
suffers from several drawbacks: (1) It only works for IR inputs, not for object
files (including cached JIT'd objects). (2) It only works for initializers
described by llvm.global_ctors and llvm.global_dtors, however not all
initializers are described in this way (Objective-C, for example, describes
initializers via specially named metadata sections). (3) To make the
initializer/deinitializer functions described by llvm.global_ctors and
llvm.global_dtors searchable they must be promoted to extern linkage, polluting
the JIT symbol table (extra care must be taken to ensure this promotion does
not result in symbol name clashes).
This patch introduces several interdependent changes to ORCv2 to support the
construction of new initialization schemes, and includes an implementation of a
backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a
MachO specific scheme that handles Objective-C runtime registration (if the
Objective-C runtime is available) enabling execution of LLVM IR compiled from
Objective-C and Swift.
The major changes included in this patch are:
(1) The MaterializationUnit and MaterializationResponsibility classes are
extended to describe an optional "initializer" symbol for the module (see the
getInitializerSymbol method on each class). The presence or absence of this
symbol indicates whether the module contains any initializers or
deinitializers. The initializer symbol otherwise behaves like any other:
searching for it triggers materialization.
(2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h
which provides the following callback interface:
- Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols
in JITDylibs upon creation. E.g. __dso_handle.
- Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally
used to record initializer symbols.
- Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform
that a module is being removed.
Platform implementations can use these callbacks to track outstanding
initializers and implement a platform-specific approach for executing them. For
example, the MachOPlatform installs a plugin in the JIT linker to scan for both
__mod_inits sections (for C++ static constructors) and ObjC metadata sections.
If discovered, these are processed in the usual platform order: Objective-C
registration is carried out first, then static initializers are executed,
ensuring that calls to Objective-C from static initializers will be safe.
This patch updates LLJIT to use the new scheme for initialization. Two
LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO
platform. The GenericIR platform implements a modified version of the previous
llvm.global-ctor scraping scheme to provide support for Windows and
Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO
specific initialization as described above.
Reviewers: sgraenitz, dblaikie
Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74300
ObjectLinkingLayer was not correctly propagating dependencies through local
symbols within an object. This could cause symbol lookup to return before a
searched-for symbol is ready if the following conditions are met:
(1) The definition of the symbol being searched for transitively depends on a
local symbol within the same object, and that local symbol in turn
transitively depends on an external symbol provided by some other module
in the JIT.
(2) Concurrent compilation is enabled.
(3) Thread scheduling causes the lookup of the searched-for symbol to return
before all transitive dependencies of the looked-up symbol are emitted.
This bug was found by inspection and has not been observed in practice.
A jitlink test case has been added to verify that symbol dependencies are
correctly propagated through local symbol definitions.
This commit adds a ManglingOptions struct to IRMaterializationUnit, and replaces
IRCompileLayer::CompileFunction with a new IRCompileLayer::IRCompiler class. The
ManglingOptions struct defines the emulated-TLS state (via a bool member,
EmulatedTLS, which is true if emulated-TLS is enabled and false otherwise). The
IRCompileLayer::IRCompiler class wraps an IRCompiler (the same way that the
CompileFunction typedef used to), but adds a method to return the
IRCompileLayer::ManglingOptions that the compiler will use.
These changes allow us to correctly determine the symbols that will be produced
when a thread local global variable defined at the IR level is compiled with or
without emulated TLS. This is required for ORCv2, where MaterializationUnits
must declare their interface up-front.
Most ORCv2 clients should not require any changes. Clients writing custom IR
compilers will need to wrap their compiler in an IRCompileLayer::IRCompiler,
rather than an IRCompileLayer::CompileFunction, however this should be a
straightforward change (see modifications to CompileUtils.* in this patch for an
example).
This fixes an off-by-one error in the argc value computed by runAsMain, and
switches lli back to using the input bitcode (rather than the string "lli") as
the effective program name.
Thanks to Stefan Graenitz for spotting the bug.
libraries.
This patch substantially updates ORCv2's lookup API in order to support weak
references, and to better support static archives. Key changes:
-- Each symbol being looked for is now associated with a SymbolLookupFlags
value. If the associated value is SymbolLookupFlags::RequiredSymbol then
the symbol must be defined in one of the JITDylibs being searched (or be
able to be generated in one of these JITDylibs via an attached definition
generator) or the lookup will fail with an error. If the associated value is
SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be
undefined, in which case it will simply not appear in the resulting
SymbolMap if the rest of the lookup succeeds.
Since lookup now requires these flags for each symbol, the lookup method now
takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet.
SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are
responsible for ensuring that the set property (i.e. unique elements) holds,
though this is usually simple and SymbolLookupSet provides convenience
methods to support this.
-- Lookups now have an associated LookupKind value, which is either
LookupKind::Static or LookupKind::DLSym. Definition generators can inspect
the lookup kind when determining whether or not to generate new definitions.
The StaticLibraryDefinitionGenerator is updated to only pull in new objects
from the archive if the lookup kind is Static. This allows lookup to be
re-used to emulate dlsym for JIT'd symbols without pulling in new objects
from archives (which would not happen in a normal dlsym call).
-- JITLink is updated to allow externals to be assigned weak linkage, and
weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value
for lookups. Unresolved weak references will be assigned the default value of
zero.
Since this patch was modifying the lookup API anyway, it alo replaces all of the
"MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for
readability. If a JITDylib's associated value is
JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only
match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's
associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will
match against any symbol defined in the JITDylib.
Some targets (E.g. MachO/arm64) use relocations to fix some CFI record fields
in the eh-frame section. When relocations are used the initial (pre-relocation)
content of the eh-frame section can no longer be interpreted by following the
eh-frame specification. This causes errors in the existing eh-frame parser.
This patch moves eh-frame handling into two LinkGraph passes that are run after
relocations have been parsed (but before they are applied). The first] pass
breaks up blocks in the eh-frame section into per-CFI-record blocks, and the
second parses blocks of (potentially multiple) CFI records and adds the
appropriate edges to any CFI fields that do not have existing relocations.
These passes can be run independently of one another. By handling eh-frame
splitting/fixing with LinkGraph passes we can both re-use existing relocations
for CFI record fields and avoid applying eh-frame fixups before parsing the
section (which would complicate the linker and require extra temporary
allocations of working memory).
InProcessMemoryManager used to make separate memory allocation calls for each
permission level (RW, RX, RO), which could lead to target-out-of-range errors
if data and code were placed too far apart (this was the source of failures in
the JITLink/AArch64 testcase when it was first landed).
This patch updates InProcessMemoryManager to allocate a single slab which is
subdivided between text and data. This should guarantee that accesses remain
in-range provided that individual object files do not exceed 1Mb in size.
This patch also re-enables the JITLink/AArch64 testcase.
llvm-svn: 374948