Before this patch the diagnostic handler was optional. If it was not
passed, the one in the LLVMContext was used.
That is probably not a pattern we want to follow. If each area has an
optional callback, there is a sea of callbacks and it is hard to follow
which one is called.
Doing this also found cases where the callback is a nice addition, like
testing that no errors or warnings are reported.
The other option is to always use the diagnostic handler in the
LLVMContext. That has a few problems
* To implement the C API we would have to set the diag handler and then
set it back to the original value.
* Code that creates the context might be far away from code that wants
the diagnostics.
I do have a patch that implements the second option and will send that as
an RFC.
llvm-svn: 254777
Summary:
In order to avoid calling pow function we generate repeated fmul when n is a
positive or negative whole number.
For each exponent we pre-compute Addition Chains in order to minimize the no.
of fmuls.
Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
We pre-compute addition chains for exponents upto 32 (which results in a max of
7 fmuls).
For eg:
4 = 2+2
5 = 2+3
6 = 3+3 and so on
Hence,
pow(x, 4.0) ==> y = fmul x, x
x = fmul y, y
ret x
For negative exponents, we simply compute the reciprocal of the final result.
Note: This transformation is only enabled under fast-math.
Patch by Mandeep Singh Grang <mgrang@codeaurora.org>
Reviewers: weimingz, majnemer, escha, davide, scanon, joerg
Subscribers: probinson, escha, llvm-commits
Differential Revision: http://reviews.llvm.org/D13994
llvm-svn: 254776
Summary: Lately, I have submitted a number of patches to fix bugs that
only occurred when using the same pass manager to compile multiple
modules (generally these bugs are failure to reset some persistent
state). Unfortunately I don't think there is currently a way to test
that from the command line. This adds a very simple flag to both llc
and opt, under which the tools will simply re-run their respective
pass pipelines using the same pass manager on (a clone of the same
module). Additionally, we verify that both outputs are bitwise the
same.
Reviewers: yaron.keren
Subscribers: loladiro, yaron.keren, kcc, llvm-commits
Differential Revision: http://reviews.llvm.org/D14965
llvm-svn: 254774
This probably shouldn't be generated in the .dwo file for CUs, only for
TUs, but it's in the sample .dwos (generated by clang) so dwp should
reflect that.
Arguably the DWP tool could be smart enough to know that the CUs
shouldn't need a debug_line.dwo section and skip that even when it's
legitimately generated for TUs, but that's a bit more off-book.
llvm-svn: 254767
Currently `OperandBundleUse::operandsHaveAttr` computes its result
without being given a specific operand. This is problematic because it
forces us to say that, e.g., even non-pointer operands in `"deopt"`
operand bundles are `readonly`, which doesn't make sense.
This commit changes `operandsHaveAttr` to work in the context of a
specific operand, so that we can give the operand attributes that make
sense for the operands's `llvm::Type`.
llvm-svn: 254764
The LegacyPassManager was storing an instance of AnalysisUsage for each instance of each pass. In practice, most instances of a single pass class share the same dependencies. We can't rely on this because passes can (and some do) have dynamic dependencies based on instance options.
We can exploit the likely commonality by uniqueing the usage information after querying the pass, but before storing it into the pass manager. This greatly reduces memory consumption by the AnalysisUsage objects. For a long pass pipeline, I measured a decrease in memory consumption for this storage of about 50%. I have not measured on the default O3 pipeline, but I suspect it will see some benefit as well since many passes are repeated (e.g. InstCombine).
Differential Revision: http://reviews.llvm.org/D14677
llvm-svn: 254760
Summary: The command prints out list of functions that were not entered.
To do this, addresses are first converted to function locations. Set
operations are used for function locations.
Differential Revision: http://reviews.llvm.org/D14889
review
llvm-svn: 254742
This commit adds a new target-independent calling convention for C++ TLS
access functions. It aims to minimize overhead in the caller by perserving as
many registers as possible.
The target-specific implementation for X86-64 is defined as following:
Arguments are passed as for the default C calling convention
The same applies for the return value(s)
The callee preserves all GPRs - except RAX and RDI
The access function makes C-style TLS function calls in the entry and exit
block, C-style TLS functions save a lot more registers than normal calls.
The added calling convention ties into the existing implementation of the
C-style TLS functions, so we can't simply use existing calling conventions
such as preserve_mostcc.
rdar://9001553
llvm-svn: 254737
This is a continuation of r253367.
These functions return is owned by the caller, so they return
std::unique_ptr now.
The call can fail, so the return is wrapped in ErrorOr.
They have a context where to report diagnostics, so they don't need to
take a string out parameter.
With this there are no call to getGlobalContext in lib/LTO.
llvm-svn: 254721
Since BuildMI() automatically adds the implicit operands for a new instruction,
adding the old instructions CC operand resulted in that there were two CC imp-def
operands, where only one was marked as dead. This caused buildSchedGraph() to
miss dependencies on the CC reg.
Review by Ulrich Weigand
llvm-svn: 254714
Add new x86 pass which replaces address calculations in load or store instructions with def register of existing LEA (must be in the same basic block), if the LEA calculates address that differs only by a displacement. Works only with -Os or -Oz.
Differential Revision: http://reviews.llvm.org/D13294
llvm-svn: 254712
For PowerPC64 we cannot just pass SP extracted from @llvm.stackrestore to
_asan_allocas_unpoison due to specific ABI requirements
(http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK).
This patch adds the value returned by @llvm.get.dynamic.area.offset to
extracted from @llvm.stackrestore stack pointer, so dynamic allocas unpoisoning
stuff would work correctly on PowerPC64.
Patch by Max Ostapenko.
Differential Revision: http://reviews.llvm.org/D15108
llvm-svn: 254707
Summary:
If we remove the MMOs from Load/Store instructions,
they are treated as volatile. This makes other optimization passes unhappy.
eg. Load/Store Optimization
So, it looks better to merge, not remove.
Reviewers: gberry, mcrosier
Subscribers: gberry, llvm-commits
Differential Revision: http://reviews.llvm.org/D14797
llvm-svn: 254694
This class is turning into a useful interface, rather than an implementation
detail, so I'm dropping the 'Base' suffix.
No functional change.
llvm-svn: 254693
with its source instead of forcing the values on GPRs.
This improves the lowering of vector code when such bitcasts happen in the
middle of vector computations.
rdar://problem/23691584
llvm-svn: 254684
Re-comitting with a change that avoids undefined uses getting put into
the VRegUses list.
The new algorithm remembers the uses encountered while walking backwards
until a matching def is found. Contrary to the previous version this:
- Works without LiveIntervals being available
- Allows to increase the precision to subregisters/lanemasks
(not used for now)
The changes in the AMDGPU tests are necessary because the R600 scheduler
is not stable with respect to the order of nodes in the ready queues.
Differential Revision: http://reviews.llvm.org/D9068
llvm-svn: 254683