transformations in target-specific DAG combines without causing DAGCombiner to
delete the same node twice. If you know of a better way to avoid this (see my
next patch for an example), please let me know.
llvm-svn: 128758
the alias of an InstAlias instead of the thing being aliased. Because we need to
know the features that are valid for an InstAlias.
This is part of a work-in-progress.
llvm-svn: 127986
to have single return block (at least getting there) for optimizations. This
is general goodness but it would prevent some tailcall optimizations.
One specific case is code like this:
int f1(void);
int f2(void);
int f3(void);
int f4(void);
int f5(void);
int f6(void);
int foo(int x) {
switch(x) {
case 1: return f1();
case 2: return f2();
case 3: return f3();
case 4: return f4();
case 5: return f5();
case 6: return f6();
}
}
=>
LBB0_2: ## %sw.bb
callq _f1
popq %rbp
ret
LBB0_3: ## %sw.bb1
callq _f2
popq %rbp
ret
LBB0_4: ## %sw.bb3
callq _f3
popq %rbp
ret
This patch teaches codegenprep to duplicate returns when the return value
is a phi and where the phi operands are produced by tail calls followed by
an unconditional branch:
sw.bb7: ; preds = %entry
%call8 = tail call i32 @f5() nounwind
br label %return
sw.bb9: ; preds = %entry
%call10 = tail call i32 @f6() nounwind
br label %return
return:
%retval.0 = phi i32 [ %call10, %sw.bb9 ], [ %call8, %sw.bb7 ], ... [ 0, %entry ]
ret i32 %retval.0
This allows codegen to generate better code like this:
LBB0_2: ## %sw.bb
jmp _f1 ## TAILCALL
LBB0_3: ## %sw.bb1
jmp _f2 ## TAILCALL
LBB0_4: ## %sw.bb3
jmp _f3 ## TAILCALL
rdar://9147433
llvm-svn: 127953
Proof-of-concept code that code-gens a module to an in-memory MachO object.
This will be hooked up to a run-time dynamic linker library (see: llvm-rtdyld
for similarly conceptual work for that part) which will take the compiled
object and link it together with the rest of the system, providing back to the
JIT a table of available symbols which will be used to respond to the
getPointerTo*() queries.
llvm-svn: 127916
rather than an int. Thankfully, this only causes LLVM to miss optimizations, not
generate incorrect code.
This just fixes the zext at the return. We still insert an i32 ZextAssert when
reading a function's arguments, but it is followed by a truncate and another i8
ZextAssert so it is not optimized.
llvm-svn: 127766
flexible.
If it returns a register class that's different from the input, then that's the
register class used for cross-register class copies.
If it returns a register class that's the same as the input, then no cross-
register class copies are needed (normal copies would do).
If it returns null, then it's not at all possible to copy registers of the
specified register class.
llvm-svn: 127368
regs. This is the only change in this checkin that may affects the
default scheduler. With better register tracking and heuristics, it
doesn't make sense to artificially lower the register limit so much.
Added -sched-high-latency-cycles and X86InstrInfo::isHighLatencyDef to
give the scheduler a way to account for div and sqrt on targets that
don't have an itinerary. It is currently defaults to 10 (the actual
number doesn't matter much), but only takes effect on non-default
schedulers: list-hybrid and list-ilp.
Added several heuristics that can be individually disabled for the
non-default sched=list-ilp mode. This helps us determine how much
better we can do on a given benchmark than the default
scheduler. Certain compute intensive loops run much faster in this
mode with the right set of heuristics, and it doesn't seem to have
much negative impact elsewhere. Not all of the heuristics are needed,
but we still need to experiment to decide which should be disabled by
default for sched=list-ilp.
llvm-svn: 127067
A major part of its (eventual) goal is to support a much cleaner separation between disassembly callbacks
provided by the target and the disassembler emitter itself, i.e. not requiring hardcoding of knowledge in tblgen
like the existing disassembly emitters do.
The hope is that some day this will allow us to replace the existing non-Thumb ARM disassembler and remove
some of the hacks the old one introduced to tblgen.
llvm-svn: 125966
query about available library functions. For now this just has
memset_pattern16, which exists on darwin, but it can be extended for a
bunch of other things in the future.
llvm-svn: 125965
Motivation: Improve the parsing of not usual (different from registers or
immediates) operand forms.
This commit implements only the generic support. The ARM specific modifications
will come next.
A table like the one below is autogenerated for every instruction
containing a 'ParserMethod' in its AsmOperandClass
static const OperandMatchEntry OperandMatchTable[20] = {
/* Mnemonic, Operand List Mask, Operand Class, Features */
{ "cdp", 29 /* 0, 2, 3, 4 */, MCK_Coproc, Feature_IsThumb|Feature_HasV6 },
{ "cdp", 58 /* 1, 3, 4, 5 */, MCK_Coproc, Feature_IsARM },
A matcher function very similar (but lot more naive) to
MatchInstructionImpl scans the table. After the mnemonic match, the
features are checked and if the "to be parsed" operand index is
present in the mask, there's a real match. Then, a switch like the one
below dispatch the parsing to the custom method provided in
'ParseMethod':
case MCK_Coproc:
return TryParseCoprocessorOperandName(Operands);
llvm-svn: 125030
the load, then it may be legal to transform the load and store to integer
load and store of the same width.
This is done if the target specified the transformation as profitable. e.g.
On arm, this can transform:
vldr.32 s0, []
vstr.32 s0, []
to
ldr r12, []
str r12, []
rdar://8944252
llvm-svn: 124708
default implementation for x86, going through the stack in a similr
fashion to how the codegen implements BUILD_VECTOR. Eventually this
will get matched to VINSERTF128 if AVX is available.
llvm-svn: 124307
implementation of EXTRACT_SUBVECTOR for x86, going through the stack
in a similr fashion to how the codegen implements BUILD_VECTOR.
Eventually this will get matched to VEXTRACTF128 if AVX is available.
llvm-svn: 124292
This will be used to check patterns referencing a forthcoming
INSERT_SUBVECTOR SDNode and will also be used to check
EXTRACT_SUBVECTOR nodes.
llvm-svn: 124191
flags. They are still not enable in this revision.
Added TargetInstrInfo::isZeroCost() to fix a fundamental problem with
the scheduler's model of operand latency in the selection DAG.
Generalized unit tests to work with sched-cycles.
llvm-svn: 123969