Various Windows SDK headers use _MSC_VER values to figure out what
version of the VC++ headers they're using, in particular for SAL macros.
Patch by Paul Hampson!
llvm-svn: 191015
This puts all the global PassManager debugging flags, like
-print-after-all and -time-passes, behind a managed static. This
eliminates their static initializers and, more importantly, exit-time
destructors.
The only behavioral change I anticipate is that tools need to
initialize the PassManager before parsing the command line in order to
export these options, which makes sense. Tools that already initialize
the standard passes (opt/llc) don't need to do anything new.
llvm-svn: 190974
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
llvm-svn: 190598
In DIBuilder, the context field of a TAG_member is updated to use the
scope reference. Verifier is updated accordingly.
DebugInfoFinder now needs to generate a type identifier map to have
access to the actual scope. Same applies for BreakpointPrinter.
processModule of DebugInfoFinder is called during initialization phase
of the verifier to make sure the type identifier map is constructed early
enough.
We are now able to unique a simple class as demonstrated by the added
testing case.
llvm-svn: 190334
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
llvm-svn: 190328
We used to generate the compact unwind encoding from the machine
instructions. However, this had the problem that if the user used `-save-temps'
or compiled their hand-written `.s' file (with CFI directives), we wouldn't
generate the compact unwind encoding.
Move the algorithm that generates the compact unwind encoding into the
MCAsmBackend. This way we can generate the encoding whether the code is from a
`.ll' or `.s' file.
<rdar://problem/13623355>
llvm-svn: 190290
The previous msbuild integration only worked if VS2010 was installed. This patch
renames the current integration to LLVM-vs2010 and adds LLVM-vs2012.
Differential Revision: http://llvm-reviews.chandlerc.com/D1614
llvm-svn: 190173
Iterator of std::vector may be implemented as a raw pointer. In
this case ADL does not find the find() function in the std namespace.
For example, this is the case with STDCXX implementation of vector.
Patch by Konstantin Tokarev.
llvm-svn: 189733
When unrolling is disabled in the pass manager, the loop vectorizer should also
not unroll loops. This will allow the -fno-unroll-loops option in Clang to
behave as expected (even for vectorizable loops). The loop vectorizer's
-force-vector-unroll option will (continue to) override the pass-manager
setting (including -force-vector-unroll=0 to force use of the internal
auto-selection logic).
In order to test this, I added a flag to opt (-disable-loop-unrolling) to force
disable unrolling through opt (the analog of -fno-unroll-loops in Clang). Also,
this fixes a small bug in opt where the loop vectorizer was enabled only after
the pass manager populated the queue of passes (the global_alias.ll test needed
a slight update to the RUN line as a result of this fix).
llvm-svn: 189499
This is just enough to get "llvm-ranlib foo.a" working and tested. Making
llvm-ranlib a symbolic link to llvm-ar doesn't work so well with llvm's option
parsing, but ar's option parsing is mostly custom anyway.
This patch also removes the -X32_64 option. Looks like it was just added in
r10297 as part of implementing the current command line parsing. I can add it
back (with a test) if someone really has AIX portability problems without it.
llvm-svn: 189489
This adds the msbuild integration files to the install, provides batch scripts
for (un)installing it in a convenient way, and hooks up the nsis installer to
run those scripts.
Differential Revision: http://llvm-reviews.chandlerc.com/D1537
llvm-svn: 189434
This allows setting-up the LLVM_EXTERNAL_* CMake variables that some people are using,
e.g. to set the source directory of the project in a different place.
llvm-svn: 189415
These files are intended to live in the msbuild toolset directory, which
is somewhere like:
C:\Program Files (x86)\MSBuild\Microsoft.Cpp\
v4.0\Platforms\Win32\PlatformToolsets\llvm
More work is needed to install them as part of the NSIS installer.
Patch by Warren Hunt!
llvm-svn: 189411
----
Add new API lto_codegen_compile_parallel().
This API is proposed by Nick Kledzik. The semantic is:
--------------------------------------------------------------------------
Generate code for merged module into an array of native object files. On
success returns a pointer to an array of NativeObjectFile. The count
parameter returns the number of elements in the array. Each element is
a pointer/length for a generated mach-o/ELF buffer. The buffer is owned
by the lto_code_gen_t and will be freed when lto_codegen_dispose() is called,
or lto_codegen_compile() is called again. On failure, returns NULL
(check lto_get_error_message() for details).
extern const struct NativeObjectFile*
lto_codegen_compile_parallel(lto_code_gen_t cg, size_t *count);
---------------------------------------------------------------------------
This API is currently only called on OSX platform. Linux or other Unixes
using GNU gold are not supposed to call this function, because on these systems,
object files are fed back to linker via disk file instead of memory buffer.
In this commit, lto_codegen_compile_parallel() simply calls
lto_codegen_compile() to return a single object file. In the near future,
this function is the entry point for compilation with partition. Linker can
blindly call this function even if partition is turned off; in this case,
compiler will return only one object file.
llvm-svn: 189386
This API is proposed by Nick Kledzik. The semantic is:
--------------------------------------------------------------------------
Generate code for merged module into an array of native object files. On
success returns a pointer to an array of NativeObjectFile. The count
parameter returns the number of elements in the array. Each element is
a pointer/length for a generated mach-o/ELF buffer. The buffer is owned
by the lto_code_gen_t and will be freed when lto_codegen_dispose() is called,
or lto_codegen_compile() is called again. On failure, returns NULL
(check lto_get_error_message() for details).
extern const struct NativeObjectFile*
lto_codegen_compile_parallel(lto_code_gen_t cg, size_t *count);
---------------------------------------------------------------------------
This API is currently only called on OSX platform. Linux or other Unixes
using GNU gold are not supposed to call this function, because on these systems,
object files are fed back to linker via disk file instead of memory buffer.
In this commit, lto_codegen_compile_parallel() simply calls
lto_codegen_compile() to return a single object file. In the near future,
this function is the entry point for compilation with partition. Linker can
blindly call this function even if partition is turned off; in this case,
compiler will return only one object file.
llvm-svn: 189297
It was previously not being built on Windows because the cmake file relied
on a sed script to generate a .in file that llvm-config needs.
By using cmake's configure_file function, we can get rid off the sed hack,
and also have this work on Windows.
Differential Revision: http://llvm-reviews.chandlerc.com/D1481
llvm-svn: 189125
Allow CMake to pick up external projects in llvm/tools without the need to modify the "llvm/tools/CMakeLists.txt" file.
This makes it easier to work with projects that live in other repositories, without needing to specify each one in "llvm/tools/CMakeLists.txt".
llvm-svn: 188921
Like yaml ObjectFiles, this will be very useful for testing the MC CFG
implementation (mostly MCObjectDisassembler), by matching the output
with YAML, and for potential users of the MC CFG, by using it as an input.
There isn't much to the actual format, it is just a serialization of the
MCModule class. Of note:
- Basic block references (pred/succ, ..) are represented by the BB's
start address.
- Just as in the MC CFG, instructions are MCInsts with a size.
- Operands have a prefix representing the type (only register and
immediate supported here).
- Instruction opcodes are represented by their names; enum values aren't
stable, enum names mostly are: usually, a change to a name would need
lots of changes in the backend anyway.
Same with registers.
All in all, an example is better than 1000 words, here goes:
A simple binary:
Disassembly of section __TEXT,__text:
_main:
100000f9c: 48 8b 46 08 movq 8(%rsi), %rax
100000fa0: 0f be 00 movsbl (%rax), %eax
100000fa3: 3b 04 25 48 00 00 00 cmpl 72, %eax
100000faa: 0f 8c 07 00 00 00 jl 7 <.Lend>
100000fb0: 2b 04 25 48 00 00 00 subl 72, %eax
.Lend:
100000fb7: c3 ret
And the (pretty verbose) generated YAML:
---
Atoms:
- StartAddress: 0x0000000100000F9C
Size: 20
Type: Text
Content:
- Inst: MOV64rm
Size: 4
Ops: [ RRAX, RRSI, I1, R, I8, R ]
- Inst: MOVSX32rm8
Size: 3
Ops: [ REAX, RRAX, I1, R, I0, R ]
- Inst: CMP32rm
Size: 7
Ops: [ REAX, R, I1, R, I72, R ]
- Inst: JL_4
Size: 6
Ops: [ I7 ]
- StartAddress: 0x0000000100000FB0
Size: 7
Type: Text
Content:
- Inst: SUB32rm
Size: 7
Ops: [ REAX, REAX, R, I1, R, I72, R ]
- StartAddress: 0x0000000100000FB7
Size: 1
Type: Text
Content:
- Inst: RET
Size: 1
Ops: [ ]
Functions:
- Name: __text
BasicBlocks:
- Address: 0x0000000100000F9C
Preds: [ ]
Succs: [ 0x0000000100000FB7, 0x0000000100000FB0 ]
<snip>
...
llvm-svn: 188890
In order to appease people (in Apple) who accuse me for committing "huge change" (?) without proper review.
Thank Eric for fixing a compile-warning.
llvm-svn: 188204
1. Add some helper classes for partitions. They are designed in a
way such that the top-level LTO driver will not see much difference
with or without partitioning.
2. Introduce work-dir. Now all intermediate files generated during
LTO phases will be saved under work-dir. User can specify the workdir
via -lto-workdir=/path/to/dir. By default the work-dir will be
erased before linker exit. To keep the workdir, do -lto-keep, or -lto-keep=1.
TODO: Erase the workdir, if the linker exit prematurely.
We are currently not able to remove directory on signal. The support
routines simply ignore directory.
3. Add one new API lto_codegen_get_files_need_remove().
Linker and LTO plugin will communicate via this API about which files
(including directories) need to removed before linker exit.
llvm-svn: 188188