Summary:
Implements AsmWriter support for printing the module summary index to
assembly with the format discussed in the RFC "LLVM Assembly format for
ThinLTO Summary".
Implements just enough of the parsing support to recognize and ignore
the summary entries. As agreed in the RFC thread, this will be the
behavior when assembling the IR. A follow on change will implement
parsing/assembling of the summary entries for use by tools that
currently build the summary index from bitcode.
Reviewers: dexonsmith, pcc
Subscribers: inglorion, eraman, steven_wu, dblaikie, llvm-commits
Differential Revision: https://reviews.llvm.org/D46699
llvm-svn: 333335
We have a few functions that virtually all command wants to run on
process startup/shutdown. This patch adds InitLLVM class to do that
all at once, so that we don't need to copy-n-paste boilerplate code
to each llvm command's main() function.
Differential Revision: https://reviews.llvm.org/D45602
llvm-svn: 330046
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313390
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313382
Fix for PR32763
An assert that checks if a Ref was untracked fails during ThinLTO context cleanup. The issue is because lazy loading temporary nodes didn't properly track ValueAsMetadata nodes. This patch ensures that the temporary nodes are properly tracked when they're replaced with the value.
llvm-svn: 310967
llvm-dis.cpp has the following include chain:
llvm/Bitcode/BitcodeReader.h
llvm/IR/ModuleSummaryIndex.h
llvm/IR/Module.h
llvm/IR/Function.h
llvm/IR/Argument.h
llvm/IR/Attributes.h
llvm/IR/Attributes.gen
This means llvm-dis needs to depend on intrinsics_gen.
llvm-svn: 287428
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
llvm-svn: 286566
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.
The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.
Differential Revision: https://reviews.llvm.org/D26384
llvm-svn: 286214
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106595.html
This change also fixes an API oddity where BitstreamCursor::Read() would
return zero for the first read past the end of the bitstream, but would
report_fatal_error for subsequent reads. Now we always report_fatal_error
for all reads past the end. Updated clients to check for the end of the
bitstream before reading from it.
I also needed to add padding to the invalid bitcode tests in
test/Bitcode/. This is because the streaming interface was not checking that
the file size is a multiple of 4.
Differential Revision: https://reviews.llvm.org/D26219
llvm-svn: 285773
This change is motivated by an upcoming change to the metadata representation
used for CFI. The indirect function call checker needs type information for
external function declarations in order to correctly generate jump table
entries for such declarations. We currently associate such type information
with declarations using a global metadata node, but I plan [1] to move all
such metadata to global object attachments.
In bitcode, metadata attachments for function declarations appear in the
global metadata block. This seems reasonable to me because I expect metadata
attachments on declarations to be uncommon. In the long term I'd also expect
this to be the case for CFI, because we'd want to use some specialized bitcode
format for this metadata that could be read as part of the ThinLTO thin-link
phase, which would mean that it would not appear in the global metadata block.
To solve the lazy loaded metadata issue I was seeing with D20147, I use the
same bitcode representation for metadata attachments for global variables as I
do for function declarations. Since there's a use case for metadata attachments
in the global metadata block, we might as well use that representation for
global variables as well, at least until we have a mechanism for lazy loading
global variables.
In the assembly format, the metadata attachments appear after the "declare"
keyword in order to avoid a parsing ambiguity.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21052
llvm-svn: 273336
looking for it along $PATH. This allows installs of LLVM tools outside of
$PATH to find the symbolizer and produce pretty backtraces if they crash.
llvm-svn: 272232
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
This inlines materializeAll into the only caller
(materializeAllPermanently) and renames materializeAllPermanently to
just materializeAll.
llvm-svn: 256024
Summary:
1. llvm-as/llvm-dis tools do not check for input filename length.
2. llvm-dis does not verify the `Streamer` variable against `nullptr` properly, so the `M` variable could be uninitialized (e.g. if the input file does not exist) leading to null dref.
Patch by Lenar Safin!
Reviewers: samsonov
Reviewed By: samsonov
Subscribers: samsonov, llvm-commits
Differential Revision: http://reviews.llvm.org/D9584
llvm-svn: 237051
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Remove all the global bits to do with preserving use-list order by
moving the `cl::opt`s to the individual tools that want them. There's a
minor functionality change to `libLTO`, in that you can't send in
`-preserve-bc-uselistorder=false`, but making that bit settable (if it's
worth doing) should be through explicit LTO API.
As a drive-by fix, I removed some includes of `UseListOrder.h` that were
made unnecessary by recent commits.
llvm-svn: 234973
Pull the `-preserve-ll-uselistorder` bit up through all the callers of
`Module::print()`. I converted callers of `operator<<` to
`Module::print()` where necessary to pull the bit through.
llvm-svn: 234968
Gut all the non-pointer API from the variable wrappers, except an
implicit conversion from `DIGlobalVariable` to `DIDescriptor`. Note
that if you're updating out-of-tree code, `DIVariable` wraps
`MDLocalVariable` (`MDVariable` is a common base class shared with
`MDGlobalVariable`).
llvm-svn: 234840
Since r199356, we've printed a warning when dropping debug info.
r225562 started crashing on that, since it registered a diagnostic
handler that only expected errors. This fixes the handler to expect
other severities. As a side effect, it now prints "error: " at the
start of error messages, similar to `llvm-as`.
There was a testcase for r199356, but it only really checked the
assembler. Move `test/Bitcode/drop-debug-info.ll` to `test/Assembler`,
and introduce `test/Bitcode/drop-debug-info.3.5.ll` (and companion
`.bc`) to test the bitcode reader.
Note: tools/gold/gold-plugin.cpp has an equivalent bug, but I'm not sure
what the best fix is there. I'll file a PR.
llvm-svn: 230416
The bitcode reading interface used std::error_code to report an error to the
callers and it is the callers job to print diagnostics.
This is not ideal for error handling or diagnostic reporting:
* For error handling, all that the callers care about is 3 possibilities:
* It worked
* The bitcode file is corrupted/invalid.
* The file is not bitcode at all.
* For diagnostic, it is user friendly to include far more information
about the invalid case so the user can find out what is wrong with the
bitcode file. This comes up, for example, when a developer introduces a
bug while extending the format.
The compromise we had was to have a lot of error codes.
With this patch we use the DiagnosticHandler to communicate with the
human and std::error_code to communicate with the caller.
This allows us to have far fewer error codes and adds the infrastructure to
print better diagnostics. This is so because the diagnostics are printed when
he issue is found. The code that detected the problem in alive in the stack and
can pass down as much context as needed. As an example the patch updates
test/Bitcode/invalid.ll.
Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the
caller. A simple one like llvm-dis can just use fatal errors. The gold plugin
needs a bit more complex treatment because of being passed non-bitcode files. An
hypothetical interactive tool would make all bitcode errors non-fatal.
llvm-svn: 225562
Take a StringRef instead of a "const char *".
Take a "std::error_code &" instead of a "std::string &" for error.
A create static method would be even better, but this patch is already a bit too
big.
llvm-svn: 216393
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)
llvm-svn: 202052
are part of the core IR library in order to support dumping and other
basic functionality.
Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.
Update all of the #includes to match.
All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.
llvm-svn: 198688
This puts all the global PassManager debugging flags, like
-print-after-all and -time-passes, behind a managed static. This
eliminates their static initializers and, more importantly, exit-time
destructors.
The only behavioral change I anticipate is that tools need to
initialize the PassManager before parsing the command line in order to
export these options, which makes sense. Tools that already initialize
the standard passes (opt/llc) don't need to do anything new.
llvm-svn: 190974
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Again, tools are trickier to pick the main module header for than
library source files. I've started to follow the pattern of using
LLVMContext.h when it is included as a stub for program source files.
llvm-svn: 169252