handles with a pointer to the containing map. When a map is copied, these
pointers need to be corrected to point to the new map. If not, then consider
the case of a map M1 which maps a value V to something. Create a copy M2 of
M1. At this point there are two value handles on V, one representing V as a
key in M1, the other representing V as a key in M2. But both value handles
point to M1 as the containing map. Now delete V. The value handles remove
themselves from their containing map (which destroys them), but only the first
value handle is successful: the second one cannot remove itself from M1 as
(once the first one has removed itself) there is nothing there to remove; it
is therefore not destroyed. This causes an assertion failure "All references
to V were not removed?".
llvm-svn: 109851
with an existing allocator. The interesting use case of this
is that it allows "StringMap<whatever, BumpPtrAllocator&>" for
when you want to allocate out of a preexisting bump pointer
allocator owned by someone else.
llvm-svn: 109213
replaced by a bigger array in SmallPtrSet (by overridding it), instead just use a
pointer to the start of the storage, and have SmallPtrSet pass in the value to use.
This has the disadvantage that SmallPtrSet becomes bigger by one pointer. It has
the advantage that it no longer uses tricky C++ rules, and is clearly correct while
I'm not sure the previous version was. This was inspired by g++-4.6 pointing out
that SmallPtrSetImpl was writing off the end of SmallArray, which it was. Since
SmallArray is replaced with a bigger array in SmallPtrSet, the write was still to
valid memory. But it was writing off the end of the declared array type - sounds
kind of dubious to me, like it sounded dubious to g++-4.6. Maybe g++-4.6 is wrong
and this construct is perfectly valid and correctly compiled by all compilers, but
I think it is better to avoid the whole can of worms by avoiding this construct.
llvm-svn: 107285
SmallArray[SmallSize] in the SmallPtrSetIteratorImpl, and this is
one off the end of the array. For those who care, right now gcc
warns about writing off the end because it is confused about the
declaration of SmallArray as having length 1 in the parent class
SmallPtrSetIteratorImpl. However if you tweak code to unconfuse
it, then it still warns about writing off the end of the array,
because of this buffer overflow. In short, even with this fix
gcc-4.6 will warn about writing off the end of the array, but now
that is only because it is confused.
llvm-svn: 107200
the Profile method. Currently this only works with the default FoldingSetTraits
implementation.
The point of this is to allow nodes to not store context values which are only
used during profiling. A better solution would thread this value through the
folding algorithms, but then those would need to be (1) templated and
(2) non-opaque.
llvm-svn: 105819
'class llvm::DAGDeltaAlgorithm' has virtual functions and accessible non-virtual destructor
Not sure if this is the best solution, but this class has state and some of the
classes that inherit from it also do, so it looks appropriate.
llvm-svn: 105675
- This provides a convenient alternative to using something llvm::prior or
manual iterator access, for example::
if (T *Prev = foo->getPrevNode())
...
instead of::
iterator it(foo);
if (it != begin()) {
--it;
...
}
- Chris, please review.
llvm-svn: 103647
Microoptimize Twine's with unsigned and int to not pin their value to
the stack. This saves stack space in common cases and allows mem2reg
in the caller. A simple example is:
void foo(const Twine &);
void bar(int x) {
foo("xyz: " + Twine(x));
}
Before:
__Z3bari:
subq $40, %rsp
movl %edi, 36(%rsp)
leaq L_.str3(%rip), %rax
leaq 36(%rsp), %rcx
leaq 8(%rsp), %rdi
movq %rax, 8(%rsp)
movq %rcx, 16(%rsp)
movb $3, 24(%rsp)
movb $7, 25(%rsp)
callq __Z3fooRKN4llvm5TwineE
addq $40, %rsp
ret
After:
__Z3bari:
subq $24, %rsp
leaq L_.str3(%rip), %rax
movq %rax, (%rsp)
movslq %edi, %rax
movq %rax, 8(%rsp)
movb $3, 16(%rsp)
movb $7, 17(%rsp)
leaq (%rsp), %rdi
callq __Z3fooRKN4llvm5TwineE
addq $24, %rsp
ret
It saves 16 bytes of stack and one instruction in this case.
llvm-svn: 103107
Limit alignment in SmallVector 8, otherwise GCC assumes 16 byte alignment.
opetaror new, and malloc only return 8-byte aligned memory on 32-bit Linux,
which cause a crash if code is compiled with -O3 (or -ftree-vectorize) and some
SmallVector code is vectorized.
llvm-svn: 102604
CGSCC can delete nodes in regions of the callgraph that
have already been visited. If new CG nodes are allocated
to the same pointer, we shouldn't abort, just handle it
correctly by assigning a new number. This should restore
stability by removing invalidated pointers that *will* be
reused from the densemap in the iterator.
llvm-svn: 101628
to keep the node entries in scc_iterator up to date instead of dangling as
the SCC mutates.
This is a really terrible problem which was causing -g to affect codegen
because it would permute the memory image of the compiler process.
Thanks to Dale for expertly hunting it down.
llvm-svn: 101565
ownership over the pointer it contains. Useful when we want to
communicate ownership while still having several clients holding on to
the same pointer *without* introducing reference counting.
llvm-svn: 100463
BumpPtrAllocator-allocated region to allow it to be stored in a more
compact form and to avoid the need for a non-trivial destructor call.
Use this new mechanism in ScalarEvolution instead of
FastFoldingSetNode to avoid leaking memory in the case where a
FoldingSetNodeID uses heap storage, and to reduce overall memory
usage.
llvm-svn: 98829
It gets its own implementation totally divorced from the (presumably
performance-sensitive) routines which parse into a uint64_t.
Add APInt::operator|=(uint64_t), which is situationally much better than
using a full APInt.
llvm-svn: 97381
payloads. APFloat's internal folding routines always make QNaNs now,
instead of sometimes making QNaNs and sometimes SNaNs depending on the
type.
llvm-svn: 97364
The MicroBlaze is a highly configurable 32-bit soft-microprocessor for
use on Xilinx FPGAs. For more information see:
http://www.xilinx.com/tools/microblaze.htmhttp://en.wikipedia.org/wiki/MicroBlaze
The current LLVM MicroBlaze backend generates assembly which can be
compiled using the an appropriate binutils assembler.
llvm-svn: 96969
and use them to avoid a copy of a string in getNameWithPrefix in
the common case. It seems like Value::setName and other places
should use this as well?
llvm-svn: 93301
- getToken is modeled after StringRef::split but it can split on multiple
separator chars and skips leading seperators.
- SplitString is a StringRef::split variant for more than 2 elements with the
same behaviour as getToken.
llvm-svn: 93161
a single pointer (PointerIntPair) member. In "small" mode, the
pointer field is reinterpreted as a set of bits. In "large" mode,
the pointer points to a heap-allocated object.
Also, give BitVector empty and swap functions.
And, add some simple unittests for BitVector and SmallBitVector.
llvm-svn: 92730
smallest-normalized-magnitude values in a given FP semantics.
Provide an APFloat-to-string conversion which I am quite ready to admit could
be much more efficient.
llvm-svn: 92126
and there is a new SmallVectorTemplateBase class in between it and SmallVectorImpl.
SmallVectorTemplateBase can be specialized based on isPodLike.
llvm-svn: 91518
1. Use std::equal instead of reinventing it.
2. don't run dtors in destroy_range if element is pod-like.
3. Use isPodLike to decide between memcpy/uninitialized_copy
instead of is_class. isPodLike is more generous in some cases.
llvm-svn: 91427
isPodLike type trait. This is a generally useful type trait for
more than just DenseMap, and we really care about whether something
acts like a pod, not whether it really is a pod.
llvm-svn: 91421
This change removes the DefaultConstructible
and CopyAssignable constraints on the template
parameter T (the first one).
The second template parameter (R) is defaulted to be
identical to the first and controls the result type.
By specifying it to be (const T&) additionally the
CopyConstructible constraint on T can be removed.
This allows to use StringSwitch e.g. for llvm::Constant
instances.
Regarding the other review feedback regarding performance
because of taking pointers, this class should be completely
optimizable like before, since all methods are inline and
the pointer dereferencing and result value caching should be
possible behind the scenes by the "as-if" rule.
llvm-svn: 91123
4.2.4, 4.3.4, 4.4.2.
The workaround is to use a local min/max implementation that takes an integer
param, and not a reference to integer param (like std::min does).
llvm-svn: 89352
2. Allow SCCIterator to work with inverse graphs.
3. Fix an incorrect comment in GraphTraits.h (the type in the comment
was given as GraphType* when it is actually const GraphType &).
Patch by Patrick Alexander Simmons.
llvm-svn: 89091