1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
Commit Graph

5 Commits

Author SHA1 Message Date
Tim Northover
5f6de253c5 ARM: use a pseudo-instruction for cmpxchg at -O0.
The fast register-allocator cannot cope with inter-block dependencies without
spilling. This is fine for ldrex/strex loops coming from atomicrmw instructions
where any value produced within a block is dead by the end, but not for
cmpxchg. So we lower a cmpxchg at -O0 via a pseudo-inst that gets expanded
after regalloc.

Fortunately this is at -O0 so we don't have to care about performance. This
simplifies the various axes of expansion considerably: we assume a strong
seq_cst operation and ensure ordering via the always-present DMB instructions
rather than v8 acquire/release instructions.

Should fix the 32-bit part of PR25526.

llvm-svn: 266679
2016-04-18 21:48:55 +00:00
Tim Northover
369e0e389f ARM: sink atomic release barrier as far as possible into cmpxchg.
DMB instructions can be expensive, so it's best to avoid them if possible. In
atomicrmw operations there will always be an attempted store so a release
barrier is always needed, but in the cmpxchg case we can delay the DMB until we
know we'll definitely try to perform a store (and so need release semantics).

In the strong cmpxchg case this isn't quite free: we must duplicate the LDREX
instructions to skip the barrier on subsequent iterations. The basic outline
becomes:

        ldrex rOld, [rAddr]
        cmp rOld, rDesired
        bne Ldone
        dmb
    Lloop:
        strex rRes, rNew, [rAddr]
        cbz rRes Ldone
        ldrex rOld, [rAddr]
        cmp rOld, rDesired
        beq Lloop
    Ldone:

So we'll skip this version for strong operations in "minsize" functions.

llvm-svn: 261568
2016-02-22 20:55:50 +00:00
Ahmed Bougacha
ec3a12595c [ARM] Emit clrex in the expanded cmpxchg fail block.
ARM counterpart to r248291:

In the comparison failure block of a cmpxchg expansion, the initial
ldrex/ldxr will not be followed by a matching strex/stxr.
On ARM/AArch64, this unnecessarily ties up the execution monitor,
which might have a negative performance impact on some uarchs.

Instead, release the monitor in the failure block.
The clrex instruction was designed for this: use it.

Also see ARMARM v8-A B2.10.2:
"Exclusive access instructions and Shareable memory locations".

Differential Revision: http://reviews.llvm.org/D13033

llvm-svn: 248294
2015-09-22 17:22:58 +00:00
Robin Morisset
1932ecdd2a Use target-dependent emitLeading/TrailingFence instead of the target-independent insertLeading/TrailingFence (in AtomicExpandPass)
Fixes two latent bugs:
- There was no fence inserted before expanded seq_cst load (unsound on Power)
- There was only a fence release before seq_cst stores (again unsound, in particular on Power)
    It is not even clear if this is correct on ARM swift processors (where release fences are
    DMB ishst instead of DMB ish). This behaviour is currently preserved on ARM Swift
    as it is not clear whether it is incorrect. I would love to get documentation stating
    whether it is correct or not.
These two bugs were not triggered because Power is not (yet) using this pass, and these
behaviours happen to be (mostly?) working on ARM
(although they completely butchered the semantics of the llvm IR).

See:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-August/075821.html
for an example of the problems that can be caused by the second of these bugs.

I couldn't see a way of fixing these in a completely target-independent way without
adding lots of unnecessary fences on ARM, hence the target-dependent parts of this
patch.

This patch implements the new target-dependent parts only for ARM (the default
of not doing anything is enough for AArch64), other architectures will use this
infrastructure in later patches.

llvm-svn: 217076
2014-09-03 21:01:03 +00:00
Robin Morisset
b2dd60f27d Rename AtomicExpandLoadLinked into AtomicExpand
AtomicExpandLoadLinked is currently rather ARM-specific. This patch is the first of
a group that aim at making it more target-independent. See
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-August/075873.html
for details

The command line option is "atomic-expand"

llvm-svn: 216231
2014-08-21 21:50:01 +00:00