General purpose registers 30 and 31 are handled differently when they are
reserved as the base-pointer and frame-pointer respectively. This fixes the
offset of their fixed-stack objects when there are fpr calle-saved registers.
Differential Revision: https://reviews.llvm.org/D85850
I was recently debugging a similar issue to https://reviews.llvm.org/D86500 only with a large metadata section. Only after I finished debugging it did I discover it was fixed very recently.
My version of the fix was going to alignTo since that uses uint64_t and improves the readability of the code. So I though I would go ahead and share it.
Differential Revision: https://reviews.llvm.org/D86957
This is needed for an upcoming change to how we translate conditional branches
which might generate these.
Differential Revision: https://reviews.llvm.org/D86383
These instructions actually use a 512-byte location, where bytes 464-511 are ignored.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D86942
On -O0, i1 strict_fsetcc will be promoted to i32. We don't handle that
in TD patterns. This patch fills logic in PPCISelDAGToDAG to handle more
cases.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D86595
This patch adds the td instruction definitions of the xvcvspbf16 and xvcvbf16spn
instructions, along with their respective MC tests.
Differential Revision: https://reviews.llvm.org/D86794
This reverts commit e9d9a612084b47fc4277523561d61e675370c854.
This patch was previously revert by 04879086b44348cad600a0a1ccbe1f7776cc3cf9
with the reapplication being done after breaking the assert used to
ensure SP is always 16-byte aligned, which is a requirement of the AAPCS.
For extra context the latest patch caused runtime failures when
building with "-march=armv8-a+sve -mllvm -aarch64-sve-vector-bits-min=256".
Unmerges have the same fundamental problem as G_TRUNC, and G_TRUNC
could be implemented in terms of G_UNMERGE_VALUES. Reducing the number
of elements in unmerge results ends up producing the original unmerge
type profile, so the artifact combiner needs to eliminate the
intermediate illegal registers. This avoids infinite looping in the
legalizer in a future change.
Assuming an unmerge has each result unmerged the same way, this ends
up producing a new unmerge of the source for every definition. I'm not
sure if the artifact combiner should either insert temporary merges
here and erase the original merge, or if the combiner should look at
uses from defs rather than defs from uses for unmerges.
In a few cases this regresses from using 16-bit shifts for 8-bit
values to using 32-bit shifts, but I think these can be legalized
later (the other legalization rules don't try very hard to use 16-bit
shifts either).
Currently the dbg_value ends up in the relaxed branch block. A future
commit will push the dbg_value out of this block, and I'm not sure how
to coax the IR into producing the same MIR at the relevant point.
Loop Idiom Recognize Pass (LIRP) attempts to transform loops with subscripted arrays
into memcpy/memset function calls. In some particular situation, this transformation
introduces negative impacts. For example: https://bugs.llvm.org/show_bug.cgi?id=47300
This patch will enable users to disable a particular part of the transformation, while
he/she can still enjoy the benefit brought about by the rest of LIRP. The default
behavior stays unchanged: no part of LIRP is disabled by default.
Reviewed By: etiotto (Ettore Tiotto)
Differential Revision: https://reviews.llvm.org/D86262
We have Error.cpp/.h which contains some code for working with error codes.
In fact we use Error/Expected<> almost everywhere already and we can get rid
of these files.
Note: a few places in the code used readobj specific error codes,
e.g. `return readobj_error::unknown_symbol`. But these codes are never really used,
i.e. the code checks the fact of a success/error call only.
So I've changes them to `return inconvertibleErrorCode()` for now.
It seems that these places probably should be converted to use `Error`/`Expected<>`.
Differential revision: https://reviews.llvm.org/D86772
This relands e9a3d1a401b07cbf7b11695637f1b549782a26cd which was originally
missing linking LLVMSupport into LLMVFileCheck which broke the SHARED_LIBS build.
Original summary:
The actual FileCheck logic seems to be implemented in LLVMSupport. I don't see a
good reason for having FileCheck implemented there as it has a very specific use
while LLVMSupport is a dependency of pretty much every LLVM tool there is. In
fact, the only use of FileCheck I could find (outside the FileCheck tool and the
FileCheck unit test) is a single call in GISelMITest.h.
This moves the FileCheck logic to its own LLVMFileCheck library. This way only
FileCheck and the GlobalISelTests now have a dependency on this code.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D86344
This patch adds tests for dumping the .debug_line_str section. The
dumper of the debug_line_str section is able to write nonprintable
strings as escaped chars while the dumper of the debug_str and
debug_str.dwo sections cannot. I will fix them and add tests for them
in a follow-up patch.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D86916
`amdgpu-elf-definitions.test` is a file that tests
`Format`, 'OS/ABI' and 'Machine' fields printed for EM_AMDGPU.
It uses a precompiled object.
It is not needed to have it, because:
1) We already test formats in `file-header-format.test` + `llvm/unittests/Object/ELFObjectFileTest.cpp`.
2) We test 'OS/ABI' in `file-header-os-abi.test` for all possible values.
3) We test machine types in `file-header-machine-types.test`
In addition we have `amdgpu-elf-headers.test` which tests EM_AMDGPU specific flags. I.e.
it also tests the fact that llvm-readobj/elf are able to dump such objects.
This patch removes the test case and the corresponding binary.
Differential revision: https://reviews.llvm.org/D86774
This replaces `reportError` calls with `reportUniqueWarning` and improves testing
for the code that is related to stack sizes dumping.
Differential revision: https://reviews.llvm.org/D86783
I have fixed up a number of warnings resulting from TypeSize -> uint64_t
casts and calling getVectorNumElements() on scalable vector types. I
think most of the changes are fairly trivial except for those in
DAGTypeLegalizer::SplitVecRes_MLOAD I've tried to ensure we create
the MachineMemoryOperands in a sensible way for scalable vectors.
I have added a CHECK line to the following test:
CodeGen/AArch64/sve-split-load.ll
that ensures no new warnings are added.
Differential Revision: https://reviews.llvm.org/D86697
Currently it is hard to avoid having LLVM link to the system install of
ncurses, since it uses check_library_exists to find e.g. libtinfo and
not find_library or find_package.
With this change the ncurses lib is found with find_library, which also
considers CMAKE_PREFIX_PATH. This solves an issue for the spack package
manager, where we want to use the zlib installed by spack, and spack
provides the CMAKE_PREFIX_PATH for it.
This is a similar change as https://reviews.llvm.org/D79219, which just
landed in master.
Patch By: haampie
Differential Revision: https://reviews.llvm.org/D85820
MemoryPhis with a single value are correct, but can lead to errors when
updating. Clean up single entry Phis newly added when cloning blocks.
Resolves PR46574.
This patch makes the debug_str section optional. When the debug_str
section exists but doesn't contain anything, yaml2obj will emit a
section header for it.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D86860
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
getNumElements() is being removed from base VectorType in
order to eliminate the class of bugs in which a scalable vector
is accidentally treated like a fixed length vector. Clients of
this function should either call getElementCount(), and handle
the case where getElementCount().isScalable() is true, or they can
cast to FixedVectorType and call getNumElements() if they are
sure that the vector has fixed width.
Deprecated VectorType functions will be removed after the LLVM
12 branch.
See: http://lists.llvm.org/pipermail/llvm-dev/2020-March/139811.html
Reviewed By: fpetrogalli
Differential Revision: https://reviews.llvm.org/D78127
getValuesInOffloadArrays goes through the offload arrays in __tgt_target_data_begin_mapper getting the values stored in them before the call is issued.
call void @__tgt_target_data_begin_mapper(arg0, arg1,
i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
...)
Diferential Revision: https://reviews.llvm.org/D86300
The 1st try was reverted because I missed an assert that
needed softening.
As discussed in D86798 / rG09652721 , we were potentially
returning a different result for whether an Instruction
is commutable depending on if we call the base class or
derived class method.
This requires relaxing asserts in GVN, but that pass
seems to be working otherwise.
NewGVN requires more work because it uses different
code paths for numbering binops and calls.