1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
Commit Graph

4 Commits

Author SHA1 Message Date
Florian Hahn
ed39c36dcf [IVDescriptors] Skip FOR where we have multiple sink points for now.
This fixes a crash with instructions where multiple operands are
first-order-recurrences.
2019-11-28 22:18:47 +01:00
Florian Hahn
1f7f3a6e63 Recommit f0c2a5a "[LV] Generalize conditions for sinking instrs for first order recurrences."
This version contains 2 fixes for reported issues:
1. Make sure we do not try to sink terminator instructions.
2. Make sure we bail out, if we try to sink an instruction that needs to
   stay in place for another recurrence.

Original message:
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.

With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.

As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.

Fixes PR43398.

Reviewers: hsaito, dcaballe, Ayal, rengolin

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D69228
2019-11-24 21:21:55 +00:00
Hans Wennborg
173103be2a Revert f0c2a5a "[LV] Generalize conditions for sinking instrs for first order recurrences."
It broke Chromium, causing "Instruction does not dominate all uses!" errors.
See https://bugs.chromium.org/p/chromium/issues/detail?id=1022297#c1 for a
reproducer.

> If the recurrence PHI node has a single user, we can sink any
> instruction without side effects, given that all users are dominated by
> the instruction computing the incoming value of the next iteration
> ('Previous'). We can sink instructions that may cause traps, because
> that only causes the trap to occur later, but not on any new paths.
>
> With the relaxed check, we also have to make sure that we do not have a
> direct cycle (meaning PHI user == 'Previous), which indicates a
> reduction relation, which potentially gets missed by
> ReductionDescriptor.
>
> As follow-ups, we can also sink stores, iff they do not alias with
> other instructions we move them across and we could also support sinking
> chains of instructions and multiple users of the PHI.
>
> Fixes PR43398.
>
> Reviewers: hsaito, dcaballe, Ayal, rengolin
>
> Reviewed By: Ayal
>
> Differential Revision: https://reviews.llvm.org/D69228
2019-11-07 11:00:02 +01:00
Florian Hahn
148b9b7a78 [LV] Generalize conditions for sinking instrs for first order recurrences.
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.

With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.

As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.

Fixes PR43398.

Reviewers: hsaito, dcaballe, Ayal, rengolin

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D69228
2019-11-02 22:08:27 +01:00