This commit prospectively brings the benefits of r198766 to older supported
Python versions (2.5+).
Tested with Python 2.6, 2.7, 3.1 and 3.3 (!)
llvm-svn: 199009
On the other hand, exec(compile()) doesn't work in older Python versions in the
2.x series.
This commit introduces exec(compile()) with a fallback to plain exec(). That'll
hopefully hit the sweet spot in terms of version support.
Followup to r198766 which added enhanced source locations for lit cfg parsing.
llvm-svn: 199006
To declare or define reserved identifers is undefined behaviour in standard
C++. This needs to be addressed in compiler-rt before it can be used in LLVM.
See the list discussion for details.
This reverts commit r198858.
llvm-svn: 198884
Python doesn't do a good job at diagnosing string exec() so use execfile()
where available.
This should be a timesaver when trying to get to the bottom of build bot
failures.
Before:
File "llvm/utils/lit/lit/TestingConfig.py", line 93, in load_from_path
exec("exec data in cfg_globals")
File "<string>", line 1, in <module>
File "<string>", line 194, in <module>
NameError: name 'typo' is not defined
After:
File "llvm/utils/lit/lit/TestingConfig.py", line 95, in load_from_path
execfile(path, cfg_globals)
File "clang/test/lit.cfg", line 194, in <module>
typo
^~~~
NameError: name 'typo' is not defined
llvm-svn: 198766
It seems there is no separate instruction class for having AdSize *and*
OpSize bits set, which is required in order to disambiguate between all
these instructions. So add that to the disassembler.
Hm, perhaps we do need an AdSize16 bit after all?
llvm-svn: 198759
A ValueType in a pattern dag is a type cast, and GetNumNodeResults should
handle it (the type cast has only one result).
This comes up, for example, during the type checking of pattern fragments, for
example, AArch64's Neon_combine_2d fragment is:
dag Operands = (ops node:$Rm, node:$Rn);
dag Fragment = (v2f64 (concat_vectors (v1f64 node:$Rm), (v1f64 node:$Rn)));
llvm-svn: 198347
Add option -i to prioritize test runs by source file modification time and
previous failure state.
This optimal scheduling reduces typical test-and-fix iteration times to a
matter of seconds by rapidly answering the questions:
1) Did my recent change fix tests that were previously failing?
2) Do the tests I just wrote / modified still work?
The current implementation requires write permissions to the source tree
because it uses mtimes to track failures.
llvm-svn: 198150
Since r197684, "install/bin/llvm-config --obj-root" hasn't shown the build tree. The builder was finding utils in the build tree, from the installed tree.
I will revert this after dragonegg builder would be tweaked not to use installed llvm-config.
llvm-svn: 197786
That's what it actually means, and with 16-bit support it's going to be
a little more relevant since in a few corner cases we may actually want
to distinguish between 16-bit and 32-bit mode (for example the bare 'push'
aliases to pushw/pushl etc.)
Patch by David Woodhouse
llvm-svn: 197768
Unfortunately, the PowerPC instruction definitions make heavy use of the
positional operand encoding heuristic to map operands onto bitfield variables
in the instruction definitions. Changing this to use name-based mapping is not
trivial, however, because additional infrastructure needs to be designed to
handle mapping of complex operands (with multiple suboperands) onto multiple
bitfield variables.
In the mean time, this adds support for positionally encoded operands to
FixedLenDecoderEmitter, so that we can generate a disassembler for the PowerPC
backend. To prevent an accidental reliance on this feature, and to prevent an
undesirable interaction with existing disassemblers, a backend must opt-in to
this support by setting the new decodePositionallyEncodedOperands
instruction-set bit to true.
When enabled, this iterates the variables that contribute to the instruction
encoding, just as the encoder does, and emulates the procedure the encoder uses
to map "numbered" operands to variables. The bit range for each variable is
also determined as the encoder determines them. This map is then consulted
during the decoder-generator's loop over operands to decode, allowing the
decoder to understand both position-based and name-based operand-to-variable
mappings.
As noted in the comment on the decodePositionallyEncodedOperands definition,
this support should be removed once it is no longer needed. There should be no
change to existing disassemblers.
llvm-svn: 197691
This is more prep for adding the PowerPC disassembler. FixedLenDecoderEmitter
should recognize PointerLikeRegClass operands as register types, and generate
register-like decoding calls instead of treating them like immediates.
llvm-svn: 197680
The convention used to specify the PowerPC ISA is that bits are numbered in
reverse order (0 is the index of the high bit). To support this "little endian"
encoding convention, CodeEmitterGen will reverse the bit numberings prior to
generating the encoding tables. In order to generate a disassembler,
FixedLenDecoderEmitter needs to do the same.
This moves the bit reversal logic out of CodeEmitterGen and into CodeGenTarget
(where it can be used by both CodeEmitterGen and FixedLenDecoderEmitter). This
is prep work for disassembly support in the PPC backend (which is the only
in-tree user of this little-endian encoding support).
llvm-svn: 197532
This missing parameter was causing bin/llvm-lit to run the unittests
from my primary build directory instead of my self-hosting build
directory because llvm-config was on my PATH.
This more closely matches what 'make check' will pass to lit.py.
llvm-svn: 197444