This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This reverts commit f1d9fe9d04ce93f6d5dcebbd2cb6a07414d7a029.
This was causing PR17964. We need to use thread data before regular data.
llvm-svn: 194960
Implementing this on bigendian platforms could get strange. I added a
target hook, getStackSlotRange, per Jakob's recommendation to make
this as explicit as possible.
llvm-svn: 194942
and update test cases accordingly.
This doesn't affect the output dumped using llvm-dwarfdump, but
readelf does now dump the debug_loc section.
llvm-svn: 194898
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
The error reported the number of explicit operands,
but that isn't what is checked. In my case, this
resulted in the confusing errors
"Too few operands." followed shortly by
"8 operands expected, but 8 given."
llvm-svn: 194862
Stop folding constant adds into GEP when the type size doesn't match.
Otherwise, the adds' operands are effectively being promoted, changing the
conditions of an overflow. Results are different when:
sext(a) + sext(b) != sext(a + b)
Problem originally found on x86-64, but also fixed issues with ARM and PPC,
which used similar code.
<rdar://problem/15292280>
Patch by Duncan Exon Smith!
llvm-svn: 194840
Summary:
When getConstant() is called for an expanded vector type, it is split into
multiple scalar constants which are then combined using appropriate build_vector
and bitcast operations.
In addition to the usual big/little endian differences, the case where the
element-order of the vector does not have the same endianness as the elements
themselves is also accounted for. For example, for v4i32 on big-endian MIPS,
the byte-order of the vector is <3210,7654,BA98,FEDC>. For little-endian, it is
<0123,4567,89AB,CDEF>.
Handling this case turns out to be a nop since getConstant() returns a splatted
vector (so reversing the element order doesn't change the value)
This fixes a number of cases in MIPS MSA where calling getConstant() during
operation legalization introduces illegal types (e.g. to legalize v2i64 UNDEF
into a v2i64 BUILD_VECTOR of illegal i64 zeros). It should also handle bigger
differences between illegal and legal types such as legalizing v2i64 into v8i16.
lowerMSASplatImm() in the MIPS backend no longer needs to avoid calling
getConstant() so this function has been updated in the same patch.
For the sake of transparency, the steps I've taken since the review are:
* Added 'virtual' to isVectorEltOrderLittleEndian() as requested. This revealed
that the MIPS tests were falsely passing because a polymorphic function was
not actually polymorphic in the reviewed patch.
* Fixed the tests that were now failing. This involved deleting the code to
handle the MIPS MSA element-order (which was previously doing an byte-order
swap instead of an element-order swap). This left
isVectorEltOrderLittleEndian() unused and it was deleted.
* Fixed build failures caused by rebasing beyond r194467-r194472. These build
failures involved the bset, bneg, and bclr instructions added in these commits
using lowerMSASplatImm() in a way that was no longer valid after this patch.
Some of these were fixed by calling SelectionDAG::getConstant() instead,
others were fixed by a new function getBuildVectorSplat() that provided the
removed functionality of lowerMSASplatImm() in a more sensible way.
Reviewers: bkramer
Reviewed By: bkramer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1973
llvm-svn: 194811
This is to avoid this transformation in some cases:
fold (conv (load x)) -> (load (conv*)x)
On architectures that don't natively support some vector
loads efficiently casting the load to a smaller vector of
larger types and loading is more efficient.
Patch by Micah Villmow.
llvm-svn: 194783
This comes into play with patchpoint, which can fold multiple
operands. Since the patchpoint is already treated as a call, the
machine mem operands won't affect anything, and there's nothing to
test. But we still want to do the right thing here to be sure that our
MIs obey the rules.
llvm-svn: 194750
In ELF and COFF an alias is just another offset in a section. There is no way
to represent an alias to something in another file.
In MachO, the spec has the N_INDR type which should allow for exactly that, but
is not currently implemented. Given that it is specified but not implemented,
we error in codegen to avoid miscompiling but don't reject aliases to
declarations in the verifier to leave the option open of implementing it.
In the past we have used alias to declarations as a way of implementing
weakref, which is why it exists in some old tests which this patch updates.
llvm-svn: 194705
If a null call target is provided, don't emit a dummy call. This
allows the runtime to reserve as little nop space as it needs without
the requirement of emitting a call.
llvm-svn: 194676
This patch reapplies r193676 with an additional fix for the Hexagon backend. The
SystemZ backend has already been fixed by r194148.
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask type for the given target. Now the type
legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
Reviewed by Nadav
llvm-svn: 194542
Based on discussions with Lang Hames and Jakob Stoklund Olesen at the hacker's lab, and in the light of upcoming work on the PBQP register allocator, it was though that CalcSpillWeights does not need to be a pass. This change will enable to customize / tune the spill weight computation depending on the allocator.
Update the documentation style while there.
No functionnal change.
llvm-svn: 194356