All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Change all the methods in LiveVariables that expect non-null
MachineInstr* to take MachineInstr& and update the call sites. This
clarifies the API, and designs away a class of iterator to pointer
implicit conversions.
llvm-svn: 274319
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
AKA: Recompile *ALL* the source code!
This one went much better. No manual edits here. I spot-checked for
silliness and grep-checked for really broken edits and everything seemed
good. It all still compiles. Yell if you see something that looks goofy.
llvm-svn: 169133
A register mask operand kills any live physreg that isn't preserved.
Unlike an implicit-def operand, the clobbered physregs are never live
afterwards.
This means LiveVariables has to track a much smaller number of live
physregs, and it should spend much less time in addRegisterDead().
llvm-svn: 148609
Provide MRI::getNumVirtRegs() and TRI::index2VirtReg() functions to allow
iteration over virtual registers without depending on the representation of
virtual register numbers.
llvm-svn: 123098
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
Previously, LiveIntervalAnalysis would infer phi joins by looking for multiply
defined registers. That doesn't work if the phi join is implicitly defined in
all but one of the predecessors.
llvm-svn: 96994
We want LiveVariables clients to use methods rather than accessing the
getVarInfo data structure directly. That way it will be possible to change the
LiveVariables representation.
llvm-svn: 90240
When splitting a critical edge, the registers live through the edge are:
- Used in a PHI instruction, or
- Live out from the predecessor, and
- Live in to the successor.
This allows the coalescer to eliminate even more phi joins.
llvm-svn: 89530
- Edges are split before any phis are eliminated, so the code is SSA.
- Create a proper IR BasicBlock for the split edges.
- LiveVariables::addNewBlock now has same syntax as
MachineDominatorTree::addNewBlock. Algorithm calculates predecessor live-out
set rather than successor live-in set.
This feature still causes some miscompilations.
llvm-svn: 86867
Critical edges leading to a PHI node are split when the PHI source variable is
live out from the predecessor block. This help the coalescer eliminate more
PHI joins.
llvm-svn: 86725
of the defs are processed.
Also fix a implicit_def propagation bug: a implicit_def of a physical register
should be applied to uses of the sub-registers.
llvm-svn: 82616
entries as there are basic blocks in the function. LiveVariables::getVarInfo
creates a VarInfo struct for every register in the function, leading to
quadratic space use. This patch changes the BitVector to a SparseBitVector,
which doesn't help the worst-case memory use but does reduce the actual use in
very long functions with short-lived variables.
llvm-svn: 72426
virtual registers possibly having multiple kills while still
being defined and killed in the same block. If LiveIntervals
is manually re-run after two-address lowering, it currently
does add extra kills to two-address instructions, but this
is considered a bug.
llvm-svn: 59194
no longer records a unique defining instruction, and virtual
registers may have multiple kills while still being defined
and killed in the same block.
llvm-svn: 59145
- Add a basic machine-level dead block eliminator.
These two have to go together, since many other parts of the code generator are unable to handle the unreachable blocks otherwise created.
llvm-svn: 54333
1. If part of a register is re-defined, an implicit kill and an implicit def are added to denote read / mod / write. However, this should only be necessary if the register is actually read later. This is a performance issue.
2. If a sub-register is being defined, and it doesn't have a previous use, do not add a implicit kill to the last use of a super-register:
= EAX, AX<imp-use,kill>
...
AX =
In this case, EAX is live but AX is killed, this is wrong and will cause the coalescer to do bad things.
llvm-svn: 48521