1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-25 14:02:52 +02:00
Commit Graph

7 Commits

Author SHA1 Message Date
David Blaikie
65b92c4f37 [opaque pointer type] Add textual IR support for explicit type parameter for global aliases
update.py:
import fileinput
import sys
import re

alias_match_prefix = r"(.*(?:=|:|^)\s*(?:external |)(?:(?:private|internal|linkonce|linkonce_odr|weak|weak_odr|common|appending|extern_weak|available_externally) )?(?:default |hidden |protected )?(?:dllimport |dllexport )?(?:unnamed_addr |)(?:thread_local(?:\([a-z]*\))? )?alias"
plain = re.compile(alias_match_prefix + r" (.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|addrspacecast|\[\[[a-zA-Z]|\{\{).*$)")
cast  = re.compile(alias_match_prefix + r") ((?:bitcast|inttoptr|addrspacecast)\s*\(.* to (.*?)(| addrspace\(\d+\) *)\*\)\s*(?:;.*)?$)")
gep   = re.compile(alias_match_prefix + r") ((?:getelementptr)\s*(?:inbounds)?\s*\((?P<type>.*), (?P=type)(?:\s*addrspace\(\d+\)\s*)?\* .*\)\s*(?:;.*)?$)")

def conv(line):
  m = re.match(cast, line)
  if m:
    return m.group(1) + " " + m.group(3) + ", " + m.group(2)
  m = re.match(gep, line)
  if m:
    return m.group(1) + " " + m.group(3) + ", " + m.group(2)
  m = re.match(plain, line)
  if m:
    return m.group(1) + ", " + m.group(2) + m.group(3) + "*" + m.group(4) + "\n"
  return line

for line in sys.stdin:
  sys.stdout.write(conv(line))

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

llvm-svn: 247378
2015-09-11 03:22:04 +00:00
David Blaikie
ab043ff680 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
Chandler Carruth
6264bc6537 [InstCombine] Change LLVM To canonicalize toward the value type being
stored rather than the pointer type.

This change is analogous to r220138 which changed the canonicalization
for loads. The rationale is the same: memory does not have a type,
operations (and thus the values they produce) have a type. We should
match that type as closely as possible rather than reading some form of
semantics into the pointer type.

With this change, loads and stores should no longer be made with
nonsensical types for the values that tehy load and store. This is
particularly important when trying to match specific loaded and stored
types in the process of doing other instcombines, which is what led me
down this twisty maze of miscanonicalization.

I've put quite some effort into looking through IR to find places where
LLVM's optimizer was being unreasonably conservative in the face of
mismatched load and store types, however it is possible (let's say,
likely!) I have missed some. If you see regressions here, or from
r220138, the likely cause is some part of LLVM failing to cope with load
and store types differing. Test cases appreciated, it is important that
we root all of these out of LLVM.

llvm-svn: 222748
2014-11-25 10:09:51 +00:00
Chandler Carruth
b95f276385 [InstCombine] Do an about-face on how LLVM canonicalizes (cast (load
...)) and (load (cast ...)): canonicalize toward the former.

Historically, we've tried to load using the type of the *pointer*, and
tried to match that type as closely as possible removing as many pointer
casts as we could and trading them for bitcasts of the loaded value.
This is deeply and fundamentally wrong.

Repeat after me: memory does not have a type! This was a hard lesson for
me to learn working on SROA.

There is only one thing that should actually drive the type used for
a pointer, and that is the type which we need to use to load from that
pointer. Matching up pointer types to the loaded value types is very
useful because it minimizes the physical size of the IR required for
no-op casts. Similarly, the only thing that should drive the type used
for a loaded value is *how that value is used*! Again, this minimizes
casts. And in fact, the *only* thing motivating types in any part of
LLVM's IR are the types used by the operations in the IR. We should
match them as closely as possible.

I've ended up removing some tests here as they were testing bugs or
behavior that is no longer present. Mostly though, this is just cleanup
to let the tests continue to function as intended.

The only fallout I've found so far from this change was SROA and I have
fixed it to not be impeded by the different type of load. If you find
more places where this change causes optimizations not to fire, those
too are likely bugs where we are assuming that the type of pointers is
"significant" for optimization purposes.

llvm-svn: 220138
2014-10-18 06:36:22 +00:00
Rafael Espindola
87cd774844 Allow alias to point to an arbitrary ConstantExpr.
This  patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.

This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like

@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
                                 i32 ptrtoint (i32* @bar to i32)) to i32*)

An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).

Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.

llvm-svn: 210062
2014-06-03 02:41:57 +00:00
Rafael Espindola
c5f7a8c70e Fix most of PR10367.
This patch changes the design of GlobalAlias so that it doesn't take a
ConstantExpr anymore. It now points directly to a GlobalObject, but its type is
independent of the aliasee type.

To avoid changing all alias related tests in this patches, I kept the common
syntax

@foo = alias i32* @bar

to mean the same as now. The cases that used to use cast now use the more
general syntax

@foo = alias i16, i32* @bar.

Note that GlobalAlias now behaves a bit more like GlobalVariable. We
know that its type is always a pointer, so we omit the '*'.

For the bitcode, a nice surprise is that we were writing both identical types
already, so the format change is minimal. Auto upgrade is handled by looking
through the casts and no new fields are needed for now. New bitcode will
simply have different types for Alias and Aliasee.

One last interesting point in the patch is that replaceAllUsesWith becomes
smart enough to avoid putting a ConstantExpr in the aliasee. This seems better
than checking and updating every caller.

A followup patch will delete getAliasedGlobal now that it is redundant. Another
patch will add support for an explicit offset.

llvm-svn: 209007
2014-05-16 19:35:39 +00:00
Matt Arsenault
c825ddd4ca Change behavior of calling bitcasted alias functions.
It will now only convert the arguments / return value and call
the underlying function if the types are able to be bitcasted.
This avoids using fp<->int conversions that would occur before.

llvm-svn: 187444
2013-07-30 20:45:05 +00:00