Summary:
ThinLTOCodeGenerator currently does not preserve llvm.used symbols and
it can internalize them. In order to pass the necessary information to the
legacy ThinLTOCodeGenerator, the input to the code generator is
rewritten to be based on lto::InputFile.
This fixes: PR41236
rdar://problem/49293439
Reviewers: tejohnson, pcc, dexonsmith
Reviewed By: tejohnson
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, jkorous, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60226
llvm-svn: 357931
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
Original llvm-svn: 355964
llvm-svn: 355984
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
llvm-svn: 355964
Summary:
We translate @llvm.used to COFF by generating /include directives
in the .drectve section. However, in LTO links, this happens after
directives have already been processed, so the new directives do
not take effect. This change marks @llvm.used symbols as GCRoots
so that they are preserved as intended.
Fixes PR40733.
Reviewers: rnk, pcc, ruiu
Reviewed By: ruiu
Subscribers: mehdi_amini, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58255
llvm-svn: 354410
Summary:
The changes to disable LTO unit splitting by default (r350949) and
detect inconsistently split LTO units (r350948) are causing some crashes
when the inconsistency is detected in multiple threads simultaneously.
Fix that by having the code always look for the inconsistently split
LTO units during the thin link, by checking for the presence of type
tests recorded in the summaries.
Modify test added in r350948 to remove single threading required to fix
a bot failure due to this issue (and some debugging options added in the
process of diagnosing it).
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57561
llvm-svn: 354062
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Records in the module summary index whether the bitcode was compiled
with the option necessary to enable splitting the LTO unit
(e.g. -fsanitize=cfi, -fwhole-program-vtables, or -fsplit-lto-unit).
The information is passed down to the ModuleSummaryIndex builder via a
new module flag "EnableSplitLTOUnit", which is propagated onto a flag
on the summary index.
This is then used during the LTO link to check whether all linked
summaries were built with the same value of this flag. If not, an error
is issued when we detect a situation requiring whole program visibility
of the class hierarchy. This is the case when both of the following
conditions are met:
1) We are performing LowerTypeTests or Whole Program Devirtualization.
2) There are type tests or type checked loads in the code.
Note I have also changed the ThinLTOBitcodeWriter to also gate the
module splitting on the value of this flag.
Reviewers: pcc
Subscribers: ormris, mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D53890
llvm-svn: 350948
Summary:
The old legacy LTO API had a separate cache key computation, which was
a subset of the cache key computation in the new LTO API (from what I
can tell this is largely just because certain features such as CFI,
dsoLocal, etc are only utilized via the new LTO API). However, having
separate computations is unnecessary (much of the code is duplicated),
and can lead to bugs when adding new optimizations if both cache
computation algorithms aren't updated properly - it's much easier to
maintain if we have a single facility.
This patch refactors the old LTO API code to use the cache key
computation from the new LTO API. To do this, we set up an lto::Config
object and fill in the fields that the old LTO was hashing (the others
will just use the defaults).
There are two notable changes:
- I added a Freestanding flag to the LTO Config. Currently this is only
used by the legacy LTO API. In the patch that added it (D30791) I had
asked about adding it to the new LTO API, but it looks like that was not
addressed. This should probably be discussed as a follow up to this
change, as it is orthogonal.
- The legacy LTO API had some code that was hashing the GUID of all
preserved symbols defined in the module. I looked back at the history of
this (which was added with the original hashing in the legacy LTO API in
D18494), and there is a comment in the review thread that it was added
in preparation for future internalization. We now do the internalization
of course, and that is handled in the new LTO API cache key computation
by hashing the recorded linkage type of all defined globals. Therefore I
didn't try to move over and keep the preserved symbols handling.
Reviewers: steven_wu, pcc
Subscribers: mehdi_amini, inglorion, eraman, dexonsmith, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D54635
llvm-svn: 347592
Summary:
This fixes PR 37422
In ELF, non-weak symbols can also be non-prevailing. In this particular
PR, the __llvm_profile_* symbols are non-prevailing but weren't getting
dropped - causing multiply-defined errors with lld.
Also add a test, strong_non_prevailing.ll, to ensure that multiple
copies of a strong symbol are dropped.
To fix the test regressions exposed by this fix,
- do not mark prevailing copies for symbols with 'appending' linkage.
There's no one prevailing copy for such symbols.
- fix the prevailing version in dead-strip-fulllto.ll
- explicitly pass exported symbols to llvm-lto in fumcimport.ll and
funcimport_var.ll
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith,
dang, srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D54125
llvm-svn: 346436
This reverts commit 1f3bd185c53beb6aa68446974b7e80837abd6ef0 (r326107)
because it fails
ThinLTO/X86/diagnostic-handler-remarks-with-hotness.ll.
llvm-svn: 326975
This wires up -pass-remarks-hotness-threshold to LTO and ThinLTO.
Next is to change the clang driver to pass this
with -fdiagnostics-hotness-threshold.
Differential Revision: https://reviews.llvm.org/D41465
llvm-svn: 326107
Summary:
ThinLTO indexing may decide to skip all objects. If we don't write something to
the list build system may consider this as failure or linker can reuse a file
from the previews build.
Reviewers: pcc, tejohnson
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D43415
llvm-svn: 325819
Summary: ThinLTO may skip object for other reasons, e.g. if there is no summary.
Reviewers: pcc, eugenis
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D42514
llvm-svn: 323818
Summary:
1. Use stream 0 only for combined module. Previously if combined module was not
processes ThinLTO used the stream for own output. However small changes in input,
could trigger combined module and shuffle outputs making life of llvm::LTO harder.
2. Always process combined module and write output to stream 0. Processing empty
combined module is cheap and allows llvm::LTO users to avoid implementing processing
which is already done in llvm::LTO.
Subscribers: mehdi_amini, inglorion, eraman, hiraditya
Differential Revision: https://reviews.llvm.org/D41267
llvm-svn: 320905
Summary:
ELF linkers generate __start_<secname> and __stop_<secname> symbols
when there is a value in a section <secname> where the name is a valid
C identifier. If dead stripping determines that the values declared
in section <secname> are dead, and we then internalize (and delete)
such a symbol, programs that reference the corresponding start and end
section symbols will get undefined reference linking errors.
To fix this, add the section name to the IRSymtab entry when a symbol is
defined in a specific section. Then use this in the gold-plugin to mark
the symbol as external and visible from outside the summary when the
section name is a valid C identifier.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D35639
llvm-svn: 309009
If a regular LTO module has a summary index, then instead of linking
it into the combined regular LTO module right away, add it to the
combined summary index and associate it with a special module that
represents the combined regular LTO module.
Any such modules are linked during LTO::run(), at which time we use
the results of summary-based dead stripping to control whether to
link prevailing symbols.
Differential Revision: https://reviews.llvm.org/D33922
llvm-svn: 305482
procedural optimizations to prevent dropping symbols and allow the linker
to process re-directs.
PR33145: --wrap doesn't work with lto.
Differential Revision: https://reviews.llvm.org/D33621
llvm-svn: 304719
Start using it in LLD to avoid needing to read bitcode again just to get the
target triple, and in llvm-lto2 to avoid printing symbol table information
that is inappropriate for the target.
Differential Revision: https://reviews.llvm.org/D32038
llvm-svn: 300300
Summary:
The linker needs to be able to determine whether a symbol is text or data to
handle the case of a common being overridden by a strong definition in an
archive. If the archive contains a text member of the same name as the common,
that function is discarded. However, if the archive contains a data member of
the same name, that strong definition overrides the common. This is a behavior
of ld.bfd, which the Qualcomm linker also supports in LTO.
Here's a test case to illustrate:
####
cat > 1.c << \!
int blah;
!
cat > 2.c << \!
int blah() {
return 0;
}
!
cat > 3.c << \!
int blah = 20;
!
clang -c 1.c
clang -c 2.c
clang -c 3.c
ar cr lib.a 2.o 3.o
ld 1.o lib.a -t
####
The correct output is:
1.o
(lib.a)3.o
Thanks to Shankar Easwaran and Hemant Kulkarni for the test case!
Reviewers: mehdi_amini, rafael, pcc, davide
Reviewed By: pcc
Subscribers: davide, llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D31901
llvm-svn: 300205
Introduce symbol table data structures that can be potentially written to
disk, have the LTO library build those data structures using temporarily
constructed modules and redirect the LTO library implementation to go through
those data structures. This allows us to remove the LLVMContext and Modules
owned by InputFile.
With this change I measured a peak memory consumption decrease from 5.4GB to
2.8GB in a no-op incremental ThinLTO link of Chromium on Linux. The impact on
memory consumption is larger in COFF linkers where we are currently forced
to materialize all metadata in order to read linker options. Peak memory
consumption linking a large piece of Chromium for Windows with full LTO and
debug info decreases from >64GB (OOM) to 15GB.
Part of PR27551.
Differential Revision: https://reviews.llvm.org/D31364
llvm-svn: 299168
This reverts commit r293970.
After more discussion, this belongs to the linker side and
there is no added value to do it at this level.
llvm-svn: 293993
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures,
and a recommit of r293918 after fixing LLD tests.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293970
Summary: This allows clients of the LTO API to determine the name of the fallback symbol for COFF weak externals.
Reviewers: pcc
Reviewed By: pcc
Subscribers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D29365
llvm-svn: 293960
Summary: Some compilers, including MSVC and Clang, allow linker options to be specified in source files. In the legacy LTO API, there is a getLinkerOpts() method that returns linker options for the bitcode module being processed. This change adds that method to the new API, so that the COFF linker can get the right linker options when using the new LTO API.
Reviewers: pcc, ruiu, mehdi_amini, tejohnson
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D29207
llvm-svn: 293950
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293918
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293912
Summary:
Using the linker-supplied list of "preserved" symbols, we can compute
the list of "dead" symbols, i.e. the one that are not reachable from
a "preserved" symbol transitively on the reference graph.
Right now we are using this information to mark these functions as
non-eligible for import.
The impact is two folds:
- Reduction of compile time: we don't import these functions anywhere
or import the function these symbols are calling.
- The limited number of import/export leads to better internalization.
Patch originally by Mehdi Amini.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23488
llvm-svn: 291177
This is no longer the recommended way to load modules for importing, so it should not be public API.
Differential Revision: https://reviews.llvm.org/D27292
llvm-svn: 288316
In an IR symbol table I would expect the comdats to be represented as:
- A table of strings, one for each comdat name.
- Each symbol has an optional index into that table.
The natural api for accessing that would be
InputFile:
ArrayRef<StringRef> getComdatTable() const;
Symbol:
int getComdatIndex() const;
This patch implements an API as close to that as possible. The
implementation on top of the current IRObjectFile is a bit hackish,
but should map just fine over a symbol table and is very convenient to
use.
llvm-svn: 285061