1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-28 06:22:51 +01:00
Commit Graph

41 Commits

Author SHA1 Message Date
Simon Pilgrim
8ef138051c [X86][SSE] Use bitmasks instead of shuffles where possible.
VPAND is a lot faster than VPSHUFB and VPBLENDVB - this patch ensures we attempt to lower to a basic bitmask before lowering to the slower byte shuffle/blend instructions.

Split off from D11518.

Differential Revision: http://reviews.llvm.org/D11541

llvm-svn: 243395
2015-07-28 08:54:41 +00:00
Simon Pilgrim
925a261d63 [X86][SSE] Added shuffle tests to demonstrate missed bitmask.
llvm-svn: 243324
2015-07-27 20:41:57 +00:00
Sanjay Patel
ee1b1c4540 [AVX] Improve insertion of i8 or i16 into low element of 256-bit zero vector
Without this patch, we split the 256-bit vector into halves and produced something like:
	movzwl	(%rdi), %eax
	vmovd	%eax, %xmm0
	vxorps	%xmm1, %xmm1, %xmm1
	vblendps	$15, %ymm0, %ymm1, %ymm0 ## ymm0 = ymm0[0,1,2,3],ymm1[4,5,6,7]

Now, we eliminate the xor and blend because those zeros are free with the vmovd:
        movzwl  (%rdi), %eax
        vmovd   %eax, %xmm0

This should be the final fix needed to resolve PR22685:
https://llvm.org/bugs/show_bug.cgi?id=22685

llvm-svn: 233941
2015-04-02 20:21:52 +00:00
Sanjay Patel
7bfdf498b8 [X86, AVX] use blends instead of insert128 with index 0
Another case of x86-specific shuffle strength reduction:
avoid generating insert*128 instructions with index 0 because
they are slower than their non-lane-changing blend equivalents.

Shuffle lowering already catches most of these cases, but
the zero vector case and some other paths such as in the
modified test in vector-shuffle-256-v32.ll were getting
through.

Differential Revision: http://reviews.llvm.org/D8366

llvm-svn: 232773
2015-03-19 22:29:40 +00:00
Chandler Carruth
9471b89b1d [x86] Run most of the rest of the shuffle combining over non-128-bit
vectors. This lets us fix the rest of the v16 lowering problems when
pshufb is clearly better.

We might still be able to improve some of the lowerings by enabling the
other combine-based rewriting to fire for non-128-bit vectors, but this
at least should remove any regressions from using the fancy v16i16
lowering strategy.

llvm-svn: 230753
2015-02-27 12:13:14 +00:00
Chandler Carruth
a1c6bfd527 [x86] Make the v8i16 clever single-input shuffle lowering usable for
repeated 128-bit lane shuffles of wider vector types and use it to lower
256-bit v16i16 vector shuffles where applicable.

This should let us perfectly lowering the pattern of pshuflw and pshufhw
even for AVX2 256-bit patterns.

I've not added AVX-512 support, but it should be trivial for someone
working on that to wire up.

Note that currently this generates bad, long shuffle chains because we
don't combine 256-bit target shuffles. The subsequent patches will fix
that.

llvm-svn: 230751
2015-02-27 11:33:46 +00:00
Chandler Carruth
55eca885d4 [x86] Now that the new vector shuffle legality is enabled and everything
is going well, remove the flag and the code for the old legality tests.

This is the first step toward removing the entire old vector shuffle
lowering. *Much* more code to delete coming up next.

llvm-svn: 229963
2015-02-20 03:59:35 +00:00
Chandler Carruth
fad94c932a [x86] Teach the unpack lowering how to lower with an initial unpack in
addition to lowering to trees rooted in an unpack.

This saves shuffles and or registers in many various ways, lets us
handle another class of v4i32 shuffles pre SSE4.1 without domain
crosses, etc.

llvm-svn: 229856
2015-02-19 15:06:13 +00:00
Chandler Carruth
b0373058d2 [x86] Remove the insanely over-aggressive unpack lowering strategy for
v16i8 shuffles, and replace it with new facilities.

This uses precise patterns to match exact unpacks, and the new
generalized unpack lowering only when we detect a case where we will
have to shuffle both inputs anyways and they terminate in exactly
a blend.

This fixes all of the blend horrors that I uncovered by always lowering
blends through the vector shuffle lowering. It also removes *sooooo*
much of the crazy instruction sequences required for v16i8 lowering
previously. Much cleaner now.

The only "meh" aspect is that we sometimes use pshufb+pshufb+unpck when
it would be marginally nicer to use pshufb+pshufb+por. However, the
difference there is *tiny*. In many cases its a win because we re-use
the pshufb mask. In others, we get to avoid the pshufb entirely. I've
left a FIXME, but I'm dubious we can really do better than this. I'm
actually pretty happy with this lowering now.

For SSE2 this exposes some horrors that were really already there. Those
will have to fixed by changing a different path through the v16i8
lowering.

llvm-svn: 229846
2015-02-19 12:10:37 +00:00
Chandler Carruth
358c1db65e [x86] Add initial basic support for forming blends of v16i8 vectors.
This blend instruction is ... really lame. The register usage is insane.
As a consequence this is probably only *barely* better than 2 pshufbs
followed by a por, and that mostly because it only has to read from
a single memory location.

However, this doesn't fix as much as I kind of expected, so more to go.
Pretty sure that the ordering and delegation of v16i8 is just really,
really bad.

llvm-svn: 229373
2015-02-16 10:58:23 +00:00
Craig Topper
b3a29e8067 [X86] Add support for lowering shuffles to 256-bit PALIGNR instruction.
llvm-svn: 229359
2015-02-16 06:29:06 +00:00
Craig Topper
988e9c859c [X86] Remove some hard tab characters from tests.
llvm-svn: 229358
2015-02-16 06:29:02 +00:00
Simon Pilgrim
ddbf019542 [X86][AVX2] vpslldq/vpsrldq byte shifts for AVX2
This patch refactors the existing lowerVectorShuffleAsByteShift function to add support for 256-bit vectors on AVX2 targets.

It also fixes a tablegen issue that prevented the lowering of vpslldq/vpsrldq vec256 instructions.

Differential Revision: http://reviews.llvm.org/D7596

llvm-svn: 229311
2015-02-15 13:19:52 +00:00
Chandler Carruth
2fac6b1c98 [x86] Teach the decomposed shuffle/blend lowering to use an early blend
when that will allow it to lower with a single permute instead of
multiple permutes.

It tries to detect when it will only have to do a single permute in
either case to maximize folding of loads and such.

This cuts a *lot* of the avx2 shuffle permute counts in half. =]

llvm-svn: 229309
2015-02-15 12:42:15 +00:00
Chandler Carruth
0b684c6980 [SDAG] Teach the SelectionDAG to canonicalize vector shuffles of splats
directly into blends of the splats.

These patterns show up even very late in the vector shuffle lowering
where we don't have any chance for DAG combining to kick in, and
blending is a tremendously simpler operation to model. By coercing the
shuffle into a blend we can much more easily match and lower shuffles of
splats.

Immediately with this change there are significantly more blends being
matched in the x86 vector shuffle lowering.

llvm-svn: 229308
2015-02-15 12:18:12 +00:00
Chandler Carruth
1d8146cec4 [x86] Stop shuffling zero vectors. =]
I was somewhat surprised this pattern really came up, but it does. It
seems better to just directly handle it than try to special case every
place where we end up forming a shuffle that devolves to a shuffle of
a zero vector.

llvm-svn: 229301
2015-02-15 10:34:52 +00:00
Chandler Carruth
5c0c778648 [x86] When splitting 256-bit vectors into 128-bit vectors, don't extract
subvectors from buildvectors. That doesn't really make any sense and it
breaks all of the down-stream matching of buildvectors to cleverly lower
shuffles.

With this, we now get the shift-based lowering of 256-bit vector
shuffles with AVX1 when we split them into 128-bit vectors. We also do
much better on the zero-extension patterns, although there remains quite
a bit of room for improvement here.

llvm-svn: 229299
2015-02-15 10:12:02 +00:00
Chandler Carruth
635ad2f50d [x86] Switch a collection of tests explicitly to the new vector shuffle
legality test (essentially, everything is legal).

I'm planning to make this the default shortly, but I'd like to fix
a collection of the bugs it exposes first, and this will let me easily
test them. It also showcases both the improvements and a few of the
regressions triggered by the change. The biggest improvements by far are
the significantly reduced shuffling and domain crossing in the combining
test case. The biggest regressions are missing some clever blending
patterns.

llvm-svn: 229284
2015-02-15 06:37:21 +00:00
Chandler Carruth
83f63dfef3 [x86] Remove the now-default-on flag for the new vector shuffle lowering
strategy from a bunch of tests.

llvm-svn: 229283
2015-02-15 06:20:51 +00:00
Chandler Carruth
d418a34d82 [x86] Mechanically update a bunch of tests' check lines using the latest
version of the script.

Changes include:
- Using the VEX prefix
- Skipping more detail when we have useful shuffle comments to match
- Matching more shuffle comments that have been added to the printer
  (yay!)
- Matching the destination registers of some AVX instructions
- Stripping trailing whitespace that crept in
- Fixing indentation issues

Nothing interesting going on here. I'm just trying really hard to ensure
these changes don't show up in the diffs with actual changes to the
backend.

llvm-svn: 228132
2015-02-04 10:46:53 +00:00
Simon Pilgrim
eee3b225d9 [X86][SSE] psrl(w/d/q) and psll(w/d/q) bit shifts for SSE2
Patch to match cases where shuffle masks can be reduced to bit shifts. Similar to byte shift shuffle matching from D5699.

Differential Revision: http://reviews.llvm.org/D6649

llvm-svn: 228047
2015-02-03 21:58:29 +00:00
Simon Pilgrim
f6904ffa22 [X86][AVX2] Enabled shuffle matching for the AVX2 zero extension (128bit -> 256bit) vpmovzx* instructions.
Differential Revision: http://reviews.llvm.org/D7251

llvm-svn: 228014
2015-02-03 19:34:09 +00:00
Chandler Carruth
4c0a2a8001 [x86] Add some tests for a common unpack pattern of vector shuffle that
has a remarkably unique and efficient lowering.

While we get this some of the time already, we miss a few cases and
there wasn't a principled reason we got it. We should at least test
this. v8 already has tests for this pattern.

llvm-svn: 222607
2014-11-22 05:44:43 +00:00
Chandler Carruth
5e598c0342 [x86] Restructure the checking patterns for v16 and v32 avx2 vector
shuffle lowering to allow much better blend matching.

Specifically, with the new structure the code seems clearer to me and we
correctly can hit the cases where merging two 128-bit lanes is a clear
win and can be shuffled cheaply afterward.

llvm-svn: 222539
2014-11-21 14:53:03 +00:00
Chandler Carruth
8387bec088 [x86] Teach the x86 vector shuffle lowering to detect mergable 128-bit
lanes.

By special casing these we can often either reduce the total number of
shuffles significantly or reduce the number of (high latency on Haswell)
AVX2 shuffles that potentially cross 128-bit lanes. Even when these
don't actually cross lanes, they have much higher latency to support
that. Doing two of them and a blend is worse than doing a single insert
across the 128-bit lanes to blend and then doing a single interleaved
shuffle.

While this seems like a narrow case, it kept cropping up on me and the
difference is *huge* as you can see in many of the test cases. I first
hit this trying to perfectly fix the interleaving shuffle patterns used
by Halide for AVX2.

llvm-svn: 222533
2014-11-21 13:56:05 +00:00
Chandler Carruth
2db7c4cf32 [x86] Add a bunch of test cases to 256-bit shuffles that exercise
merging 128-bit subvectors and also shuffling all the elements of those
subvectors. Currently we generate pretty bad code for many of these, but
I'm testing a patch that should dramatically improve this in addition to
making the shuffle lowering robust to other changes.

llvm-svn: 222525
2014-11-21 12:17:50 +00:00
Chandler Carruth
d0c20aee06 [x86] Don't form overly fragmented blends when splitting and
re-combining shuffles because nothing was available in the wider vector
type.

The key observation (which I've put in the comments for future
maintainers) is that at this point, no further combining is really
possible. And so even though these shuffles trivially could be combined,
we need to actually do that as we produce them when producing them this
late in the lowering.

This fixes another (huge) part of the Halide vector shuffle regressions.
As it happens, this was already well covered by the tests, but I hadn't
noticed how bad some of these got. The specific patterns that turn
directly into unpckl/h patterns were occurring *many* times in common
vector processing code.

There are still more problems here sadly, but trying to incrementally
tease them apart and it looks like this is the core of the problem in
the splitting logic.

There is some chance of regression here, you can see it in the test
changes. Specifically, where we stop forming pshufb in some cases, it is
possible that pshufb was in fact faster. Intel "says" that pshufb is
slower than the instruction sequences replacing it.

llvm-svn: 221852
2014-11-13 02:42:08 +00:00
Chandler Carruth
ed2c9efc13 [x86] Teach the new vector shuffle lowering about VBROADCAST and
VPBROADCAST.

This has the somewhat expected pervasive impact. I don't know why
I forgot about this. Everything seems good with lots of significant
improvements in the tests.

llvm-svn: 218724
2014-10-01 00:41:21 +00:00
Chandler Carruth
9a6f4aeb91 [x86] Update the exact FileCheck syntax of the 256-bit and 512-bit
shuffle tests to match that used in the script I posted and now used
consistently in 128-bit tests.

Nothing interesting changing here, just using the label name as the
FileCheck label and a slightly more general comment marker consumption
strategy.

llvm-svn: 218709
2014-09-30 22:04:45 +00:00
Chandler Carruth
b85e2503e5 [x86] Fix the new vector shuffle lowering's use of VSELECT for AVX2
lowerings.

This was hopelessly broken. First, the x86 backend wants '-1' to be the
element value representing true in a boolean vector, and second the
operand order for VSELECT is backwards from the actual x86 instructions.
To make matters worse, the backend is just using '-1' as the true value
to get the high bit to be set. It doesn't actually symbolically map the
'-1' to anything. But on x86 this isn't quite how it works: there *only*
the high bit is relevant. As a consequence weird non-'-1' values like
0x80 actually "work" once you flip the operands to be backwards.

Anyways, thanks to Hal for helping me sort out what these *should* be.

llvm-svn: 218582
2014-09-28 23:23:55 +00:00
Chandler Carruth
602ec05b20 [x86] Fix terrible bugs everywhere in the new vector shuffle lowering
and in the target shuffle combining when trying to widen vector
elements.

Previously only one of these was correct, and we didn't correctly
propagate zeroing target shuffle masks (which have a different sentinel
value from undef in non- target shuffle masks now). This isn't just
a missed optimization, this caused us to drop zeroing shuffles on the
floor and miscompile code. The added test case is one example of that.

There are other fixes to the test suite as a consequence of this as well
as restoring the undef elements in some of the masks that were lost when
I brought sanity to the actual *value* of the undef and zero sentinels.

I've also just cleaned up some of the PSHUFD and PSHUFLW and PSHUFHW
combining code, but that code really needs to go. It was a nice initial
attempt, but it isn't very principled and the recursive shuffle combiner
is much more powerful.

llvm-svn: 218562
2014-09-27 04:42:44 +00:00
Chandler Carruth
f284b12de2 [x86] Flip the sentinel values used in the target shuffle mask decoding
to significantly more sane sentinels. Notably, everywhere else in the
backend's representation of shuffles uses '-1' to represent undef. The
target shuffle masks really shouldn't diverge from that, especially as
in a few places they are manipulated by shared code.

This causes us to lose some undef lanes in various test masks. I want to
get these back, but technically it isn't invalid and there are a *lot*
of bugs here so I want to try to establish a saner baseline for fixing
some of the bugs by aligning the specific senitnel values used.

llvm-svn: 218561
2014-09-27 04:42:39 +00:00
Chandler Carruth
0f4ad15770 [x86] Fix a moderately terrifying bug in the new 128-bit shuffle logic
that managed to elude all of my fuzz testing historically. =/

Something changed to allow this code path to actually be exercised and
it was doing bad things. It is especially heavily exercised by the
patterns that emerge when doing AVX shuffles that end up lowered through
the 128-bit code path.

llvm-svn: 218540
2014-09-26 20:41:45 +00:00
Chandler Carruth
1bb2adbd64 [x86] Teach the new vector shuffle lowering a fancier way to lower
256-bit vectors with lane-crossing.

Rather than immediately decomposing to 128-bit vectors, try flipping the
256-bit vector lanes, shuffling them and blending them together. This
reduces our worst case shuffle by a pretty significant margin across the
board.

llvm-svn: 218446
2014-09-25 10:21:15 +00:00
Chandler Carruth
eea8a61d43 [x86] Implement AVX2 support for v32i8 in the new vector shuffle
lowering.

This completes the basic AVX2 feature support, but there are still some
improvements I'd like to do to really get the last mile of performance
here.

llvm-svn: 218440
2014-09-25 02:52:12 +00:00
Chandler Carruth
48217378ca [x86] More tweaks to the v32i8 test cases.
I made a mistake in the previous commit and produced the wrong pattern.
Fix that. Also make one more shuffle pattern byte-based rather than
word-based, and add two more blend patterns.

llvm-svn: 218439
2014-09-25 02:44:39 +00:00
Chandler Carruth
8bccbed9ed [x86] Re-work a bunch of the v32i8 test cases to actually involve byte
shuffles rather than word shuffles.

As you might guess, these were built starting from the word shuffle test
cases and I failed to properly port a bunch of them and left them as
widened word shuffle test cases. We still have a couple of tests that
check our ability to widen shuffles, but now we will test the actual
byte shuffle quite a bit better.

llvm-svn: 218438
2014-09-25 02:20:02 +00:00
Chandler Carruth
5fdf21544a [x86] Teach the instruction lowering to add comments describing constant
pool data being loaded into a vector register.

The comments take the form of:

  # ymm0 = [a,b,c,d,...]
  # xmm1 = <x,y,z...>

The []s are used for generic sequential data and the <>s are used for
specifically ConstantVector loads. Undef elements are printed as the
letter 'u', integers in decimal, and floating point values as floating
point values. Suggestions on improving the formatting or other aspects
of the display are very welcome.

My primary use case for this is to be able to FileCheck test masks
passed to vector shuffle instructions in-register. It isn't fantastic
for that (no decoding special zeroing semantics or other tricks), but it
at least puts the mask onto an instruction line that could reasonably be
checked. I've updated many of the new vector shuffle lowering tests to
leverage this in their test cases so that we're actually checking the
shuffle masks remain as expected.

Before implementing this, I tried a *bunch* of different approaches.
I looked into teaching the MCInstLower code to scan up the basic block
and find a definition of a register used in a shuffle instruction and
then decode that, but this seems incredibly brittle and complex.
I talked to Hal a lot about the "right" way to do this: attach the raw
shuffle mask to the instruction itself in some form of unencoded
operands, and then use that to emit the comments. I still think that's
the optimal solution here, but it proved to be beyond what I'm up for
here. In particular, it seems likely best done by completing the
plumbing of metadata through these layers and attaching the shuffle mask
in metadata which could have fully automatic dropping when encoding an
actual instruction.

llvm-svn: 218377
2014-09-24 09:39:41 +00:00
Chandler Carruth
dc4c369444 [x86] Teach the rest of the 'target shuffle' machinery about blends and
add VPBLENDD to the InstPrinter's comment generation so we get nice
comments everywhere.

Now that we have the nice comments, I can see the bug introduced by
a silly typo in the commit that enabled VPBLENDD, and have fixed it. Yay
tests that are easy to inspect.

llvm-svn: 218335
2014-09-23 22:14:14 +00:00
Chandler Carruth
4951e449b6 [x86] Teach the new shuffle lowering's blend functionality to use AVX2's
VPBLENDD where appropriate even on 128-bit vectors.

According to Agner's tables, this instruction is significantly higher
throughput (can execute on any port) on Haswell chips so we should
aggressively try to form it when available.

Sadly, this loses our delightful shuffle comments. I'll add those back
for VPBLENDD next.

llvm-svn: 218322
2014-09-23 18:16:12 +00:00
Chandler Carruth
3376585ce6 [x86] Introduce tests covering the gamut of 256-bit vector shuffling.
These are just test cases, no actual code yet. This establishes the
baseline fallback strategy we're starting from on AVX2 and the expected
lowering we use on AVX1.

Also, these test cases are very much generated. I've manually crafted
the specific pattern set that I'm hoping will be useful at exercising
the lowering code, but I've not (and could not) manually verify *all* of
these. I've spot checked and they seem legit to me.

As with the rest of vector shuffling, at a certain point the only really
useful way to check the correctness of this stuff is through fuzz
testing.

llvm-svn: 218267
2014-09-22 20:25:08 +00:00