//===- DemandedBits.cpp - Determine demanded bits -------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass implements a demanded bits analysis. A demanded bit is one that // contributes to a result; bits that are not demanded can be either zero or // one without affecting control or data flow. For example in this sequence: // // %1 = add i32 %x, %y // %2 = trunc i32 %1 to i16 // // Only the lowest 16 bits of %1 are demanded; the rest are removed by the // trunc. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DemandedBits.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "demanded-bits" char DemandedBitsWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits", "Demanded bits analysis", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits", "Demanded bits analysis", false, false) DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) { initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry()); } void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const { DB->print(OS); } static bool isAlwaysLive(Instruction *I) { return I->isTerminator() || isa(I) || I->isEHPad() || I->mayHaveSideEffects(); } void DemandedBits::determineLiveOperandBits( const Instruction *UserI, const Value *Val, unsigned OperandNo, const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2, bool &KnownBitsComputed) { unsigned BitWidth = AB.getBitWidth(); // We're called once per operand, but for some instructions, we need to // compute known bits of both operands in order to determine the live bits of // either (when both operands are instructions themselves). We don't, // however, want to do this twice, so we cache the result in APInts that live // in the caller. For the two-relevant-operands case, both operand values are // provided here. auto ComputeKnownBits = [&](unsigned BitWidth, const Value *V1, const Value *V2) { if (KnownBitsComputed) return; KnownBitsComputed = true; const DataLayout &DL = UserI->getModule()->getDataLayout(); Known = KnownBits(BitWidth); computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); if (V2) { Known2 = KnownBits(BitWidth); computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); } }; switch (UserI->getOpcode()) { default: break; case Instruction::Call: case Instruction::Invoke: if (const IntrinsicInst *II = dyn_cast(UserI)) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::bswap: // The alive bits of the input are the swapped alive bits of // the output. AB = AOut.byteSwap(); break; case Intrinsic::bitreverse: // The alive bits of the input are the reversed alive bits of // the output. AB = AOut.reverseBits(); break; case Intrinsic::ctlz: if (OperandNo == 0) { // We need some output bits, so we need all bits of the // input to the left of, and including, the leftmost bit // known to be one. ComputeKnownBits(BitWidth, Val, nullptr); AB = APInt::getHighBitsSet(BitWidth, std::min(BitWidth, Known.countMaxLeadingZeros()+1)); } break; case Intrinsic::cttz: if (OperandNo == 0) { // We need some output bits, so we need all bits of the // input to the right of, and including, the rightmost bit // known to be one. ComputeKnownBits(BitWidth, Val, nullptr); AB = APInt::getLowBitsSet(BitWidth, std::min(BitWidth, Known.countMaxTrailingZeros()+1)); } break; case Intrinsic::fshl: case Intrinsic::fshr: { const APInt *SA; if (OperandNo == 2) { // Shift amount is modulo the bitwidth. For powers of two we have // SA % BW == SA & (BW - 1). if (isPowerOf2_32(BitWidth)) AB = BitWidth - 1; } else if (match(II->getOperand(2), m_APInt(SA))) { // Normalize to funnel shift left. APInt shifts of BitWidth are well- // defined, so no need to special-case zero shifts here. uint64_t ShiftAmt = SA->urem(BitWidth); if (II->getIntrinsicID() == Intrinsic::fshr) ShiftAmt = BitWidth - ShiftAmt; if (OperandNo == 0) AB = AOut.lshr(ShiftAmt); else if (OperandNo == 1) AB = AOut.shl(BitWidth - ShiftAmt); } break; } case Intrinsic::umax: case Intrinsic::umin: case Intrinsic::smax: case Intrinsic::smin: // If low bits of result are not demanded, they are also not demanded // for the min/max operands. AB = APInt::getBitsSetFrom(BitWidth, AOut.countTrailingZeros()); break; } } break; case Instruction::Add: if (AOut.isMask()) { AB = AOut; } else { ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); AB = determineLiveOperandBitsAdd(OperandNo, AOut, Known, Known2); } break; case Instruction::Sub: if (AOut.isMask()) { AB = AOut; } else { ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); AB = determineLiveOperandBitsSub(OperandNo, AOut, Known, Known2); } break; case Instruction::Mul: // Find the highest live output bit. We don't need any more input // bits than that (adds, and thus subtracts, ripple only to the // left). AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); break; case Instruction::Shl: if (OperandNo == 0) { const APInt *ShiftAmtC; if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); AB = AOut.lshr(ShiftAmt); // If the shift is nuw/nsw, then the high bits are not dead // (because we've promised that they *must* be zero). const ShlOperator *S = cast(UserI); if (S->hasNoSignedWrap()) AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); else if (S->hasNoUnsignedWrap()) AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); } } break; case Instruction::LShr: if (OperandNo == 0) { const APInt *ShiftAmtC; if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); AB = AOut.shl(ShiftAmt); // If the shift is exact, then the low bits are not dead // (they must be zero). if (cast(UserI)->isExact()) AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } } break; case Instruction::AShr: if (OperandNo == 0) { const APInt *ShiftAmtC; if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); AB = AOut.shl(ShiftAmt); // Because the high input bit is replicated into the // high-order bits of the result, if we need any of those // bits, then we must keep the highest input bit. if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) .getBoolValue()) AB.setSignBit(); // If the shift is exact, then the low bits are not dead // (they must be zero). if (cast(UserI)->isExact()) AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } } break; case Instruction::And: AB = AOut; // For bits that are known zero, the corresponding bits in the // other operand are dead (unless they're both zero, in which // case they can't both be dead, so just mark the LHS bits as // dead). ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); if (OperandNo == 0) AB &= ~Known2.Zero; else AB &= ~(Known.Zero & ~Known2.Zero); break; case Instruction::Or: AB = AOut; // For bits that are known one, the corresponding bits in the // other operand are dead (unless they're both one, in which // case they can't both be dead, so just mark the LHS bits as // dead). ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); if (OperandNo == 0) AB &= ~Known2.One; else AB &= ~(Known.One & ~Known2.One); break; case Instruction::Xor: case Instruction::PHI: AB = AOut; break; case Instruction::Trunc: AB = AOut.zext(BitWidth); break; case Instruction::ZExt: AB = AOut.trunc(BitWidth); break; case Instruction::SExt: AB = AOut.trunc(BitWidth); // Because the high input bit is replicated into the // high-order bits of the result, if we need any of those // bits, then we must keep the highest input bit. if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), AOut.getBitWidth() - BitWidth)) .getBoolValue()) AB.setSignBit(); break; case Instruction::Select: if (OperandNo != 0) AB = AOut; break; case Instruction::ExtractElement: if (OperandNo == 0) AB = AOut; break; case Instruction::InsertElement: case Instruction::ShuffleVector: if (OperandNo == 0 || OperandNo == 1) AB = AOut; break; } } bool DemandedBitsWrapperPass::runOnFunction(Function &F) { auto &AC = getAnalysis().getAssumptionCache(F); auto &DT = getAnalysis().getDomTree(); DB.emplace(F, AC, DT); return false; } void DemandedBitsWrapperPass::releaseMemory() { DB.reset(); } void DemandedBits::performAnalysis() { if (Analyzed) // Analysis already completed for this function. return; Analyzed = true; Visited.clear(); AliveBits.clear(); DeadUses.clear(); SmallSetVector Worklist; // Collect the set of "root" instructions that are known live. for (Instruction &I : instructions(F)) { if (!isAlwaysLive(&I)) continue; LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); // For integer-valued instructions, set up an initial empty set of alive // bits and add the instruction to the work list. For other instructions // add their operands to the work list (for integer values operands, mark // all bits as live). Type *T = I.getType(); if (T->isIntOrIntVectorTy()) { if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second) Worklist.insert(&I); continue; } // Non-integer-typed instructions... for (Use &OI : I.operands()) { if (Instruction *J = dyn_cast(OI)) { Type *T = J->getType(); if (T->isIntOrIntVectorTy()) AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits()); else Visited.insert(J); Worklist.insert(J); } } // To save memory, we don't add I to the Visited set here. Instead, we // check isAlwaysLive on every instruction when searching for dead // instructions later (we need to check isAlwaysLive for the // integer-typed instructions anyway). } // Propagate liveness backwards to operands. while (!Worklist.empty()) { Instruction *UserI = Worklist.pop_back_val(); LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); APInt AOut; bool InputIsKnownDead = false; if (UserI->getType()->isIntOrIntVectorTy()) { AOut = AliveBits[UserI]; LLVM_DEBUG(dbgs() << " Alive Out: 0x" << Twine::utohexstr(AOut.getLimitedValue())); // If all bits of the output are dead, then all bits of the input // are also dead. InputIsKnownDead = !AOut && !isAlwaysLive(UserI); } LLVM_DEBUG(dbgs() << "\n"); KnownBits Known, Known2; bool KnownBitsComputed = false; // Compute the set of alive bits for each operand. These are anded into the // existing set, if any, and if that changes the set of alive bits, the // operand is added to the work-list. for (Use &OI : UserI->operands()) { // We also want to detect dead uses of arguments, but will only store // demanded bits for instructions. Instruction *I = dyn_cast(OI); if (!I && !isa(OI)) continue; Type *T = OI->getType(); if (T->isIntOrIntVectorTy()) { unsigned BitWidth = T->getScalarSizeInBits(); APInt AB = APInt::getAllOnesValue(BitWidth); if (InputIsKnownDead) { AB = APInt(BitWidth, 0); } else { // Bits of each operand that are used to compute alive bits of the // output are alive, all others are dead. determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB, Known, Known2, KnownBitsComputed); // Keep track of uses which have no demanded bits. if (AB.isNullValue()) DeadUses.insert(&OI); else DeadUses.erase(&OI); } if (I) { // If we've added to the set of alive bits (or the operand has not // been previously visited), then re-queue the operand to be visited // again. auto Res = AliveBits.try_emplace(I); if (Res.second || (AB |= Res.first->second) != Res.first->second) { Res.first->second = std::move(AB); Worklist.insert(I); } } } else if (I && Visited.insert(I).second) { Worklist.insert(I); } } } } APInt DemandedBits::getDemandedBits(Instruction *I) { performAnalysis(); auto Found = AliveBits.find(I); if (Found != AliveBits.end()) return Found->second; const DataLayout &DL = I->getModule()->getDataLayout(); return APInt::getAllOnesValue( DL.getTypeSizeInBits(I->getType()->getScalarType())); } APInt DemandedBits::getDemandedBits(Use *U) { Type *T = (*U)->getType(); Instruction *UserI = cast(U->getUser()); const DataLayout &DL = UserI->getModule()->getDataLayout(); unsigned BitWidth = DL.getTypeSizeInBits(T->getScalarType()); // We only track integer uses, everything else produces a mask with all bits // set if (!T->isIntOrIntVectorTy()) return APInt::getAllOnesValue(BitWidth); if (isUseDead(U)) return APInt(BitWidth, 0); performAnalysis(); APInt AOut = getDemandedBits(UserI); APInt AB = APInt::getAllOnesValue(BitWidth); KnownBits Known, Known2; bool KnownBitsComputed = false; determineLiveOperandBits(UserI, *U, U->getOperandNo(), AOut, AB, Known, Known2, KnownBitsComputed); return AB; } bool DemandedBits::isInstructionDead(Instruction *I) { performAnalysis(); return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && !isAlwaysLive(I); } bool DemandedBits::isUseDead(Use *U) { // We only track integer uses, everything else is assumed live. if (!(*U)->getType()->isIntOrIntVectorTy()) return false; // Uses by always-live instructions are never dead. Instruction *UserI = cast(U->getUser()); if (isAlwaysLive(UserI)) return false; performAnalysis(); if (DeadUses.count(U)) return true; // If no output bits are demanded, no input bits are demanded and the use // is dead. These uses might not be explicitly present in the DeadUses map. if (UserI->getType()->isIntOrIntVectorTy()) { auto Found = AliveBits.find(UserI); if (Found != AliveBits.end() && Found->second.isNullValue()) return true; } return false; } void DemandedBits::print(raw_ostream &OS) { auto PrintDB = [&](const Instruction *I, const APInt &A, Value *V = nullptr) { OS << "DemandedBits: 0x" << Twine::utohexstr(A.getLimitedValue()) << " for "; if (V) { V->printAsOperand(OS, false); OS << " in "; } OS << *I << '\n'; }; performAnalysis(); for (auto &KV : AliveBits) { Instruction *I = KV.first; PrintDB(I, KV.second); for (Use &OI : I->operands()) { PrintDB(I, getDemandedBits(&OI), OI); } } } static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo, const APInt &AOut, const KnownBits &LHS, const KnownBits &RHS, bool CarryZero, bool CarryOne) { assert(!(CarryZero && CarryOne) && "Carry can't be zero and one at the same time"); // The following check should be done by the caller, as it also indicates // that LHS and RHS don't need to be computed. // // if (AOut.isMask()) // return AOut; // Boundary bits' carry out is unaffected by their carry in. APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One); // First, the alive carry bits are determined from the alive output bits: // Let demand ripple to the right but only up to any set bit in Bound. // AOut = -1---- // Bound = ----1- // ACarry&~AOut = --111- APInt RBound = Bound.reverseBits(); APInt RAOut = AOut.reverseBits(); APInt RProp = RAOut + (RAOut | ~RBound); APInt RACarry = RProp ^ ~RBound; APInt ACarry = RACarry.reverseBits(); // Then, the alive input bits are determined from the alive carry bits: APInt NeededToMaintainCarryZero; APInt NeededToMaintainCarryOne; if (OperandNo == 0) { NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero; NeededToMaintainCarryOne = LHS.One | ~RHS.One; } else { NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero; NeededToMaintainCarryOne = RHS.One | ~LHS.One; } // As in computeForAddCarry APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero; APInt PossibleSumOne = LHS.One + RHS.One + CarryOne; // The below is simplified from // // APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); // APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; // APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne); // // APInt NeededToMaintainCarry = // (CarryKnownZero & NeededToMaintainCarryZero) | // (CarryKnownOne & NeededToMaintainCarryOne) | // CarryUnknown; APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) & (PossibleSumOne | NeededToMaintainCarryOne); APInt AB = AOut | (ACarry & NeededToMaintainCarry); return AB; } APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo, const APInt &AOut, const KnownBits &LHS, const KnownBits &RHS) { return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, true, false); } APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo, const APInt &AOut, const KnownBits &LHS, const KnownBits &RHS) { KnownBits NRHS; NRHS.Zero = RHS.One; NRHS.One = RHS.Zero; return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, NRHS, false, true); } FunctionPass *llvm::createDemandedBitsWrapperPass() { return new DemandedBitsWrapperPass(); } AnalysisKey DemandedBitsAnalysis::Key; DemandedBits DemandedBitsAnalysis::run(Function &F, FunctionAnalysisManager &AM) { auto &AC = AM.getResult(F); auto &DT = AM.getResult(F); return DemandedBits(F, AC, DT); } PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { AM.getResult(F).print(OS); return PreservedAnalyses::all(); }