//===- LoopPass.cpp - Loop Pass and Loop Pass Manager ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements LoopPass and LPPassManager. All loop optimization // and transformation passes are derived from LoopPass. LPPassManager is // responsible for managing LoopPasses. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/OptBisect.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PassTimingInfo.h" #include "llvm/IR/PrintPasses.h" #include "llvm/IR/StructuralHash.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "loop-pass-manager" namespace { /// PrintLoopPass - Print a Function corresponding to a Loop. /// class PrintLoopPassWrapper : public LoopPass { raw_ostream &OS; std::string Banner; public: static char ID; PrintLoopPassWrapper() : LoopPass(ID), OS(dbgs()) {} PrintLoopPassWrapper(raw_ostream &OS, const std::string &Banner) : LoopPass(ID), OS(OS), Banner(Banner) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); } bool runOnLoop(Loop *L, LPPassManager &) override { auto BBI = llvm::find_if(L->blocks(), [](BasicBlock *BB) { return BB; }); if (BBI != L->blocks().end() && isFunctionInPrintList((*BBI)->getParent()->getName())) { printLoop(*L, OS, Banner); } return false; } StringRef getPassName() const override { return "Print Loop IR"; } }; char PrintLoopPassWrapper::ID = 0; } //===----------------------------------------------------------------------===// // LPPassManager // char LPPassManager::ID = 0; LPPassManager::LPPassManager() : FunctionPass(ID), PMDataManager() { LI = nullptr; CurrentLoop = nullptr; } // Insert loop into loop nest (LoopInfo) and loop queue (LQ). void LPPassManager::addLoop(Loop &L) { if (L.isOutermost()) { // This is the top level loop. LQ.push_front(&L); return; } // Insert L into the loop queue after the parent loop. for (auto I = LQ.begin(), E = LQ.end(); I != E; ++I) { if (*I == L.getParentLoop()) { // deque does not support insert after. ++I; LQ.insert(I, 1, &L); return; } } } // Recurse through all subloops and all loops into LQ. static void addLoopIntoQueue(Loop *L, std::deque &LQ) { LQ.push_back(L); for (Loop *I : reverse(*L)) addLoopIntoQueue(I, LQ); } /// Pass Manager itself does not invalidate any analysis info. void LPPassManager::getAnalysisUsage(AnalysisUsage &Info) const { // LPPassManager needs LoopInfo. In the long term LoopInfo class will // become part of LPPassManager. Info.addRequired(); Info.addRequired(); Info.setPreservesAll(); } void LPPassManager::markLoopAsDeleted(Loop &L) { assert((&L == CurrentLoop || CurrentLoop->contains(&L)) && "Must not delete loop outside the current loop tree!"); // If this loop appears elsewhere within the queue, we also need to remove it // there. However, we have to be careful to not remove the back of the queue // as that is assumed to match the current loop. assert(LQ.back() == CurrentLoop && "Loop queue back isn't the current loop!"); llvm::erase_value(LQ, &L); if (&L == CurrentLoop) { CurrentLoopDeleted = true; // Add this loop back onto the back of the queue to preserve our invariants. LQ.push_back(&L); } } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the function, and if so, return true. bool LPPassManager::runOnFunction(Function &F) { auto &LIWP = getAnalysis(); LI = &LIWP.getLoopInfo(); Module &M = *F.getParent(); #if 0 DominatorTree *DT = &getAnalysis().getDomTree(); #endif bool Changed = false; // Collect inherited analysis from Module level pass manager. populateInheritedAnalysis(TPM->activeStack); // Populate the loop queue in reverse program order. There is no clear need to // process sibling loops in either forward or reverse order. There may be some // advantage in deleting uses in a later loop before optimizing the // definitions in an earlier loop. If we find a clear reason to process in // forward order, then a forward variant of LoopPassManager should be created. // // Note that LoopInfo::iterator visits loops in reverse program // order. Here, reverse_iterator gives us a forward order, and the LoopQueue // reverses the order a third time by popping from the back. for (Loop *L : reverse(*LI)) addLoopIntoQueue(L, LQ); if (LQ.empty()) // No loops, skip calling finalizers return false; // Initialization for (Loop *L : LQ) { for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { LoopPass *P = getContainedPass(Index); Changed |= P->doInitialization(L, *this); } } // Walk Loops unsigned InstrCount, FunctionSize = 0; StringMap> FunctionToInstrCount; bool EmitICRemark = M.shouldEmitInstrCountChangedRemark(); // Collect the initial size of the module and the function we're looking at. if (EmitICRemark) { InstrCount = initSizeRemarkInfo(M, FunctionToInstrCount); FunctionSize = F.getInstructionCount(); } while (!LQ.empty()) { CurrentLoopDeleted = false; CurrentLoop = LQ.back(); // Run all passes on the current Loop. for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { LoopPass *P = getContainedPass(Index); llvm::TimeTraceScope LoopPassScope("RunLoopPass", P->getPassName()); dumpPassInfo(P, EXECUTION_MSG, ON_LOOP_MSG, CurrentLoop->getHeader()->getName()); dumpRequiredSet(P); initializeAnalysisImpl(P); bool LocalChanged = false; { PassManagerPrettyStackEntry X(P, *CurrentLoop->getHeader()); TimeRegion PassTimer(getPassTimer(P)); #ifdef EXPENSIVE_CHECKS uint64_t RefHash = StructuralHash(F); #endif LocalChanged = P->runOnLoop(CurrentLoop, *this); #ifdef EXPENSIVE_CHECKS if (!LocalChanged && (RefHash != StructuralHash(F))) { llvm::errs() << "Pass modifies its input and doesn't report it: " << P->getPassName() << "\n"; llvm_unreachable("Pass modifies its input and doesn't report it"); } #endif Changed |= LocalChanged; if (EmitICRemark) { unsigned NewSize = F.getInstructionCount(); // Update the size of the function, emit a remark, and update the // size of the module. if (NewSize != FunctionSize) { int64_t Delta = static_cast(NewSize) - static_cast(FunctionSize); emitInstrCountChangedRemark(P, M, Delta, InstrCount, FunctionToInstrCount, &F); InstrCount = static_cast(InstrCount) + Delta; FunctionSize = NewSize; } } } if (LocalChanged) dumpPassInfo(P, MODIFICATION_MSG, ON_LOOP_MSG, CurrentLoopDeleted ? "" : CurrentLoop->getName()); dumpPreservedSet(P); if (!CurrentLoopDeleted) { // Manually check that this loop is still healthy. This is done // instead of relying on LoopInfo::verifyLoop since LoopInfo // is a function pass and it's really expensive to verify every // loop in the function every time. That level of checking can be // enabled with the -verify-loop-info option. { TimeRegion PassTimer(getPassTimer(&LIWP)); CurrentLoop->verifyLoop(); } // Here we apply same reasoning as in the above case. Only difference // is that LPPassManager might run passes which do not require LCSSA // form (LoopPassPrinter for example). We should skip verification for // such passes. // FIXME: Loop-sink currently break LCSSA. Fix it and reenable the // verification! #if 0 if (mustPreserveAnalysisID(LCSSAVerificationPass::ID)) assert(CurrentLoop->isRecursivelyLCSSAForm(*DT, *LI)); #endif // Then call the regular verifyAnalysis functions. verifyPreservedAnalysis(P); F.getContext().yield(); } if (LocalChanged) removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); removeDeadPasses(P, CurrentLoopDeleted ? "" : CurrentLoop->getHeader()->getName(), ON_LOOP_MSG); if (CurrentLoopDeleted) // Do not run other passes on this loop. break; } // If the loop was deleted, release all the loop passes. This frees up // some memory, and avoids trouble with the pass manager trying to call // verifyAnalysis on them. if (CurrentLoopDeleted) { for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); freePass(P, "", ON_LOOP_MSG); } } // Pop the loop from queue after running all passes. LQ.pop_back(); } // Finalization for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { LoopPass *P = getContainedPass(Index); Changed |= P->doFinalization(); } return Changed; } /// Print passes managed by this manager void LPPassManager::dumpPassStructure(unsigned Offset) { errs().indent(Offset*2) << "Loop Pass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { Pass *P = getContainedPass(Index); P->dumpPassStructure(Offset + 1); dumpLastUses(P, Offset+1); } } //===----------------------------------------------------------------------===// // LoopPass Pass *LoopPass::createPrinterPass(raw_ostream &O, const std::string &Banner) const { return new PrintLoopPassWrapper(O, Banner); } // Check if this pass is suitable for the current LPPassManager, if // available. This pass P is not suitable for a LPPassManager if P // is not preserving higher level analysis info used by other // LPPassManager passes. In such case, pop LPPassManager from the // stack. This will force assignPassManager() to create new // LPPassManger as expected. void LoopPass::preparePassManager(PMStack &PMS) { // Find LPPassManager while (!PMS.empty() && PMS.top()->getPassManagerType() > PMT_LoopPassManager) PMS.pop(); // If this pass is destroying high level information that is used // by other passes that are managed by LPM then do not insert // this pass in current LPM. Use new LPPassManager. if (PMS.top()->getPassManagerType() == PMT_LoopPassManager && !PMS.top()->preserveHigherLevelAnalysis(this)) PMS.pop(); } /// Assign pass manager to manage this pass. void LoopPass::assignPassManager(PMStack &PMS, PassManagerType PreferredType) { // Find LPPassManager while (!PMS.empty() && PMS.top()->getPassManagerType() > PMT_LoopPassManager) PMS.pop(); LPPassManager *LPPM; if (PMS.top()->getPassManagerType() == PMT_LoopPassManager) LPPM = (LPPassManager*)PMS.top(); else { // Create new Loop Pass Manager if it does not exist. assert (!PMS.empty() && "Unable to create Loop Pass Manager"); PMDataManager *PMD = PMS.top(); // [1] Create new Loop Pass Manager LPPM = new LPPassManager(); LPPM->populateInheritedAnalysis(PMS); // [2] Set up new manager's top level manager PMTopLevelManager *TPM = PMD->getTopLevelManager(); TPM->addIndirectPassManager(LPPM); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS Pass *P = LPPM->getAsPass(); TPM->schedulePass(P); // [4] Push new manager into PMS PMS.push(LPPM); } LPPM->add(this); } static std::string getDescription(const Loop &L) { return "loop"; } bool LoopPass::skipLoop(const Loop *L) const { const Function *F = L->getHeader()->getParent(); if (!F) return false; // Check the opt bisect limit. OptPassGate &Gate = F->getContext().getOptPassGate(); if (Gate.isEnabled() && !Gate.shouldRunPass(this, getDescription(*L))) return true; // Check for the OptimizeNone attribute. if (F->hasOptNone()) { // FIXME: Report this to dbgs() only once per function. LLVM_DEBUG(dbgs() << "Skipping pass '" << getPassName() << "' in function " << F->getName() << "\n"); // FIXME: Delete loop from pass manager's queue? return true; } return false; } LCSSAVerificationPass::LCSSAVerificationPass() : FunctionPass(ID) { initializeLCSSAVerificationPassPass(*PassRegistry::getPassRegistry()); } char LCSSAVerificationPass::ID = 0; INITIALIZE_PASS(LCSSAVerificationPass, "lcssa-verification", "LCSSA Verifier", false, false)