//===- IFSHandler.cpp -----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===-----------------------------------------------------------------------===/ #include "llvm/InterfaceStub/IFSHandler.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/InterfaceStub/IFSStub.h" #include "llvm/Support/Error.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/YAMLTraits.h" using namespace llvm; using namespace llvm::ifs; LLVM_YAML_IS_SEQUENCE_VECTOR(IFSSymbol) namespace llvm { namespace yaml { /// YAML traits for ELFSymbolType. template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, IFSSymbolType &SymbolType) { IO.enumCase(SymbolType, "NoType", IFSSymbolType::NoType); IO.enumCase(SymbolType, "Func", IFSSymbolType::Func); IO.enumCase(SymbolType, "Object", IFSSymbolType::Object); IO.enumCase(SymbolType, "TLS", IFSSymbolType::TLS); IO.enumCase(SymbolType, "Unknown", IFSSymbolType::Unknown); // Treat other symbol types as noise, and map to Unknown. if (!IO.outputting() && IO.matchEnumFallback()) SymbolType = IFSSymbolType::Unknown; } }; template <> struct ScalarTraits { static void output(const IFSEndiannessType &Value, void *, llvm::raw_ostream &Out) { switch (Value) { case IFSEndiannessType::Big: Out << "big"; break; case IFSEndiannessType::Little: Out << "little"; break; default: llvm_unreachable("Unsupported endianness"); } } static StringRef input(StringRef Scalar, void *, IFSEndiannessType &Value) { Value = StringSwitch(Scalar) .Case("big", IFSEndiannessType::Big) .Case("little", IFSEndiannessType::Little) .Default(IFSEndiannessType::Unknown); if (Value == IFSEndiannessType::Unknown) { return "Unsupported endianness"; } return StringRef(); } static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template <> struct ScalarTraits { static void output(const IFSBitWidthType &Value, void *, llvm::raw_ostream &Out) { switch (Value) { case IFSBitWidthType::IFS32: Out << "32"; break; case IFSBitWidthType::IFS64: Out << "64"; break; default: llvm_unreachable("Unsupported bit width"); } } static StringRef input(StringRef Scalar, void *, IFSBitWidthType &Value) { Value = StringSwitch(Scalar) .Case("32", IFSBitWidthType::IFS32) .Case("64", IFSBitWidthType::IFS64) .Default(IFSBitWidthType::Unknown); if (Value == IFSBitWidthType::Unknown) { return "Unsupported bit width"; } return StringRef(); } static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template <> struct MappingTraits { static void mapping(IO &IO, IFSTarget &Target) { IO.mapOptional("ObjectFormat", Target.ObjectFormat); IO.mapOptional("Arch", Target.ArchString); IO.mapOptional("Endianness", Target.Endianness); IO.mapOptional("BitWidth", Target.BitWidth); } // Compacts symbol information into a single line. static const bool flow = true; // NOLINT(readability-identifier-naming) }; /// YAML traits for ELFSymbol. template <> struct MappingTraits { static void mapping(IO &IO, IFSSymbol &Symbol) { IO.mapRequired("Name", Symbol.Name); IO.mapRequired("Type", Symbol.Type); // The need for symbol size depends on the symbol type. if (Symbol.Type == IFSSymbolType::NoType) { IO.mapOptional("Size", Symbol.Size, (uint64_t)0); } else if (Symbol.Type == IFSSymbolType::Func) { Symbol.Size = 0; } else { IO.mapRequired("Size", Symbol.Size); } IO.mapOptional("Undefined", Symbol.Undefined, false); IO.mapOptional("Weak", Symbol.Weak, false); IO.mapOptional("Warning", Symbol.Warning); } // Compacts symbol information into a single line. static const bool flow = true; // NOLINT(readability-identifier-naming) }; /// YAML traits for ELFStub objects. template <> struct MappingTraits { static void mapping(IO &IO, IFSStub &Stub) { if (!IO.mapTag("!ifs-v1", true)) IO.setError("Not a .tbe YAML file."); IO.mapRequired("IfsVersion", Stub.IfsVersion); IO.mapOptional("SoName", Stub.SoName); IO.mapOptional("Target", Stub.Target); IO.mapOptional("NeededLibs", Stub.NeededLibs); IO.mapRequired("Symbols", Stub.Symbols); } }; /// YAML traits for ELFStubTriple objects. template <> struct MappingTraits { static void mapping(IO &IO, IFSStubTriple &Stub) { if (!IO.mapTag("!ifs-v1", true)) IO.setError("Not a .tbe YAML file."); IO.mapRequired("IfsVersion", Stub.IfsVersion); IO.mapOptional("SoName", Stub.SoName); IO.mapOptional("Target", Stub.Target.Triple); IO.mapOptional("NeededLibs", Stub.NeededLibs); IO.mapRequired("Symbols", Stub.Symbols); } }; } // end namespace yaml } // end namespace llvm /// Attempt to determine if a Text stub uses target triple. bool usesTriple(StringRef Buf) { for (line_iterator I(MemoryBufferRef(Buf, "ELFStub")); !I.is_at_eof(); ++I) { StringRef Line = (*I).trim(); if (Line.startswith("Target:")) { if (Line == "Target:" || (Line.find("{") != Line.npos)) { return false; } } } return true; } Expected> ifs::readIFSFromBuffer(StringRef Buf) { yaml::Input YamlIn(Buf); std::unique_ptr Stub(new IFSStubTriple()); if (usesTriple(Buf)) { YamlIn >> *Stub; } else { YamlIn >> *static_cast(Stub.get()); } if (std::error_code Err = YamlIn.error()) { return createStringError(Err, "YAML failed reading as IFS"); } if (Stub->IfsVersion > IFSVersionCurrent) return make_error( "IFS version " + Stub->IfsVersion.getAsString() + " is unsupported.", std::make_error_code(std::errc::invalid_argument)); if (Stub->Target.ArchString) { Stub->Target.Arch = ELF::convertArchNameToEMachine(Stub->Target.ArchString.getValue()); } return std::move(Stub); } Error ifs::writeIFSToOutputStream(raw_ostream &OS, const IFSStub &Stub) { yaml::Output YamlOut(OS, NULL, /*WrapColumn =*/0); std::unique_ptr CopyStub(new IFSStubTriple(Stub)); if (Stub.Target.Arch) { CopyStub->Target.ArchString = std::string( ELF::convertEMachineToArchName(Stub.Target.Arch.getValue())); } IFSTarget Target = Stub.Target; if (CopyStub->Target.Triple || (!CopyStub->Target.ArchString && !CopyStub->Target.Endianness && !CopyStub->Target.BitWidth)) YamlOut << *CopyStub; else YamlOut << *static_cast(CopyStub.get()); return Error::success(); } Error ifs::overrideIFSTarget(IFSStub &Stub, Optional OverrideArch, Optional OverrideEndianness, Optional OverrideBitWidth, Optional OverrideTriple) { std::error_code OverrideEC(1, std::generic_category()); if (OverrideArch) { if (Stub.Target.Arch && Stub.Target.Arch.getValue() != OverrideArch.getValue()) { return make_error( "Supplied Arch conflicts with the text stub", OverrideEC); } Stub.Target.Arch = OverrideArch.getValue(); } if (OverrideEndianness) { if (Stub.Target.Endianness && Stub.Target.Endianness.getValue() != OverrideEndianness.getValue()) { return make_error( "Supplied Endianness conflicts with the text stub", OverrideEC); } Stub.Target.Endianness = OverrideEndianness.getValue(); } if (OverrideBitWidth) { if (Stub.Target.BitWidth && Stub.Target.BitWidth.getValue() != OverrideBitWidth.getValue()) { return make_error( "Supplied BitWidth conflicts with the text stub", OverrideEC); } Stub.Target.BitWidth = OverrideBitWidth.getValue(); } if (OverrideTriple) { if (Stub.Target.Triple && Stub.Target.Triple.getValue() != OverrideTriple.getValue()) { return make_error( "Supplied Triple conflicts with the text stub", OverrideEC); } Stub.Target.Triple = OverrideTriple.getValue(); } return Error::success(); } Error ifs::validateIFSTarget(IFSStub &Stub, bool ParseTriple) { std::error_code ValidationEC(1, std::generic_category()); if (Stub.Target.Triple) { if (Stub.Target.Arch || Stub.Target.BitWidth || Stub.Target.Endianness || Stub.Target.ObjectFormat) { return make_error( "Target triple cannot be used simultaneously with ELF target format", ValidationEC); } if (ParseTriple) { IFSTarget TargetFromTriple = parseTriple(Stub.Target.Triple.getValue()); Stub.Target.Arch = TargetFromTriple.Arch; Stub.Target.BitWidth = TargetFromTriple.BitWidth; Stub.Target.Endianness = TargetFromTriple.Endianness; } return Error::success(); } if (!Stub.Target.Arch || !Stub.Target.BitWidth || !Stub.Target.Endianness) { // TODO: unify the error message. if (!Stub.Target.Arch) { return make_error("Arch is not defined in the text stub", ValidationEC); } if (!Stub.Target.BitWidth) { return make_error("BitWidth is not defined in the text stub", ValidationEC); } if (!Stub.Target.Endianness) { return make_error( "Endianness is not defined in the text stub", ValidationEC); } } return Error::success(); } IFSTarget ifs::parseTriple(StringRef TripleStr) { Triple IFSTriple(TripleStr); IFSTarget RetTarget; // TODO: Implement a Triple Arch enum to e_machine map. switch (IFSTriple.getArch()) { case Triple::ArchType::aarch64: RetTarget.Arch = (IFSArch)ELF::EM_AARCH64; break; case Triple::ArchType::x86_64: RetTarget.Arch = (IFSArch)ELF::EM_X86_64; break; default: RetTarget.Arch = (IFSArch)ELF::EM_NONE; } RetTarget.Endianness = IFSTriple.isLittleEndian() ? IFSEndiannessType::Little : IFSEndiannessType::Big; RetTarget.BitWidth = IFSTriple.isArch64Bit() ? IFSBitWidthType::IFS64 : IFSBitWidthType::IFS32; return RetTarget; } void ifs::stripIFSTarget(IFSStub &Stub, bool StripTriple, bool StripArch, bool StripEndianness, bool StripBitWidth) { if (StripTriple || StripArch) { Stub.Target.Arch.reset(); Stub.Target.ArchString.reset(); } if (StripTriple || StripEndianness) { Stub.Target.Endianness.reset(); } if (StripTriple || StripBitWidth) { Stub.Target.BitWidth.reset(); } if (StripTriple) { Stub.Target.Triple.reset(); } if (!Stub.Target.Arch && !Stub.Target.BitWidth && !Stub.Target.Endianness) { Stub.Target.ObjectFormat.reset(); } }