//===-- HexagonVectorCombine.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // HexagonVectorCombine is a utility class implementing a variety of functions // that assist in vector-based optimizations. // // AlignVectors: replace unaligned vector loads and stores with aligned ones. //===----------------------------------------------------------------------===// #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsHexagon.h" #include "llvm/IR/Metadata.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include #include #include #include #include #include #define DEBUG_TYPE "hexagon-vc" using namespace llvm; namespace { class HexagonVectorCombine { public: HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_, DominatorTree &DT_, TargetLibraryInfo &TLI_, const TargetMachine &TM_) : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_), TLI(TLI_), HST(static_cast(*TM_.getSubtargetImpl(F))) {} bool run(); // Common integer type. IntegerType *getIntTy() const; // Byte type: either scalar (when Length = 0), or vector with given // element count. Type *getByteTy(int ElemCount = 0) const; // Boolean type: either scalar (when Length = 0), or vector with given // element count. Type *getBoolTy(int ElemCount = 0) const; // Create a ConstantInt of type returned by getIntTy with the value Val. ConstantInt *getConstInt(int Val) const; // Get the integer value of V, if it exists. Optional getIntValue(const Value *Val) const; // Is V a constant 0, or a vector of 0s? bool isZero(const Value *Val) const; // Is V an undef value? bool isUndef(const Value *Val) const; int getSizeOf(const Value *Val) const; int getSizeOf(const Type *Ty) const; int getTypeAlignment(Type *Ty) const; VectorType *getByteVectorTy(int ScLen) const; Constant *getNullValue(Type *Ty) const; Constant *getFullValue(Type *Ty) const; Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start, int Length, int Where) const; Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const; Value *concat(IRBuilder<> &Builder, ArrayRef Vecs) const; Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize, Value *Pad) const; Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy, Type *ToTy) const; Value *vlsb(IRBuilder<> &Builder, Value *Val) const; Value *vbytes(IRBuilder<> &Builder, Value *Val) const; Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID, Type *RetTy, ArrayRef Args) const; Optional calculatePointerDifference(Value *Ptr0, Value *Ptr1) const; template > bool isSafeToMoveBeforeInBB(const Instruction &In, BasicBlock::const_iterator To, const T &Ignore = {}) const; Function &F; const DataLayout &DL; AliasAnalysis &AA; AssumptionCache &AC; DominatorTree &DT; TargetLibraryInfo &TLI; const HexagonSubtarget &HST; private: #ifndef NDEBUG // These two functions are only used for assertions at the moment. bool isByteVecTy(Type *Ty) const; bool isSectorTy(Type *Ty) const; #endif Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start, int Length) const; }; class AlignVectors { public: AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {} bool run(); private: using InstList = std::vector; struct Segment { void *Data; int Start; int Size; }; struct AddrInfo { AddrInfo(const AddrInfo &) = default; AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T, Align H) : Inst(I), Addr(A), ValTy(T), HaveAlign(H), NeedAlign(HVC.getTypeAlignment(ValTy)) {} // XXX: add Size member? Instruction *Inst; Value *Addr; Type *ValTy; Align HaveAlign; Align NeedAlign; int Offset = 0; // Offset (in bytes) from the first member of the // containing AddrList. }; using AddrList = std::vector; struct InstrLess { bool operator()(const Instruction *A, const Instruction *B) const { return A->comesBefore(B); } }; using DepList = std::set; struct MoveGroup { MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load) : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {} Instruction *Base; // Base instruction of the parent address group. InstList Main; // Main group of instructions. InstList Deps; // List of dependencies. bool IsHvx; // Is this group of HVX instructions? bool IsLoad; // Is this a load group? }; using MoveList = std::vector; struct ByteSpan { struct Segment { // Segment of a Value: 'Len' bytes starting at byte 'Begin'. Segment(Value *Val, int Begin, int Len) : Val(Val), Start(Begin), Size(Len) {} Segment(const Segment &Seg) = default; Value *Val; // Value representable as a sequence of bytes. int Start; // First byte of the value that belongs to the segment. int Size; // Number of bytes in the segment. }; struct Block { Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {} Block(Value *Val, int Off, int Len, int Pos) : Seg(Val, Off, Len), Pos(Pos) {} Block(const Block &Blk) = default; Segment Seg; // Value segment. int Pos; // Position (offset) of the segment in the Block. }; int extent() const; ByteSpan section(int Start, int Length) const; ByteSpan &shift(int Offset); SmallVector values() const; int size() const { return Blocks.size(); } Block &operator[](int i) { return Blocks[i]; } std::vector Blocks; using iterator = decltype(Blocks)::iterator; iterator begin() { return Blocks.begin(); } iterator end() { return Blocks.end(); } using const_iterator = decltype(Blocks)::const_iterator; const_iterator begin() const { return Blocks.begin(); } const_iterator end() const { return Blocks.end(); } }; Align getAlignFromValue(const Value *V) const; Optional getLocation(const Instruction &In) const; Optional getAddrInfo(Instruction &In) const; bool isHvx(const AddrInfo &AI) const; Value *getPayload(Value *Val) const; Value *getMask(Value *Val) const; Value *getPassThrough(Value *Val) const; Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, int Adjust) const; Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, int Alignment) const; Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr, int Alignment, Value *Mask, Value *PassThru) const; Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr, int Alignment, Value *Mask) const; bool createAddressGroups(); MoveList createLoadGroups(const AddrList &Group) const; MoveList createStoreGroups(const AddrList &Group) const; bool move(const MoveGroup &Move) const; bool realignGroup(const MoveGroup &Move) const; friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI); friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG); friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS); std::map AddrGroups; HexagonVectorCombine &HVC; }; LLVM_ATTRIBUTE_UNUSED raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) { OS << "Inst: " << AI.Inst << " " << *AI.Inst << '\n'; OS << "Addr: " << *AI.Addr << '\n'; OS << "Type: " << *AI.ValTy << '\n'; OS << "HaveAlign: " << AI.HaveAlign.value() << '\n'; OS << "NeedAlign: " << AI.NeedAlign.value() << '\n'; OS << "Offset: " << AI.Offset; return OS; } LLVM_ATTRIBUTE_UNUSED raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) { OS << "Main\n"; for (Instruction *I : MG.Main) OS << " " << *I << '\n'; OS << "Deps\n"; for (Instruction *I : MG.Deps) OS << " " << *I << '\n'; return OS; } LLVM_ATTRIBUTE_UNUSED raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) { OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n'; for (const AlignVectors::ByteSpan::Block &B : BS) { OS << " @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] " << *B.Seg.Val << '\n'; } OS << ']'; return OS; } } // namespace namespace { template T *getIfUnordered(T *MaybeT) { return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr; } template T *isCandidate(Instruction *In) { return dyn_cast(In); } template <> LoadInst *isCandidate(Instruction *In) { return getIfUnordered(dyn_cast(In)); } template <> StoreInst *isCandidate(Instruction *In) { return getIfUnordered(dyn_cast(In)); } #if !defined(_MSC_VER) || _MSC_VER >= 1926 // VS2017 and some versions of VS2019 have trouble compiling this: // error C2976: 'std::map': too few template arguments // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925) template void erase_if(std::map &map, Pred p) #else template void erase_if(std::map &map, Pred p) #endif { for (auto i = map.begin(), e = map.end(); i != e;) { if (p(*i)) i = map.erase(i); else i = std::next(i); } } // Forward other erase_ifs to the LLVM implementations. template void erase_if(T &&container, Pred p) { llvm::erase_if(std::forward(container), p); } } // namespace // --- Begin AlignVectors auto AlignVectors::ByteSpan::extent() const -> int { if (size() == 0) return 0; int Min = Blocks[0].Pos; int Max = Blocks[0].Pos + Blocks[0].Seg.Size; for (int i = 1, e = size(); i != e; ++i) { Min = std::min(Min, Blocks[i].Pos); Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size); } return Max - Min; } auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan { ByteSpan Section; for (const ByteSpan::Block &B : Blocks) { int L = std::max(B.Pos, Start); // Left end. int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1. if (L < R) { // How much to chop off the beginning of the segment: int Off = L > B.Pos ? L - B.Pos : 0; Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L); } } return Section; } auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & { for (Block &B : Blocks) B.Pos += Offset; return *this; } auto AlignVectors::ByteSpan::values() const -> SmallVector { SmallVector Values(Blocks.size()); for (int i = 0, e = Blocks.size(); i != e; ++i) Values[i] = Blocks[i].Seg.Val; return Values; } auto AlignVectors::getAlignFromValue(const Value *V) const -> Align { const auto *C = dyn_cast(V); assert(C && "Alignment must be a compile-time constant integer"); return C->getAlignValue(); } auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional { if (auto *L = isCandidate(&In)) return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(), L->getAlign()); if (auto *S = isCandidate(&In)) return AddrInfo(HVC, S, S->getPointerOperand(), S->getValueOperand()->getType(), S->getAlign()); if (auto *II = isCandidate(&In)) { Intrinsic::ID ID = II->getIntrinsicID(); switch (ID) { case Intrinsic::masked_load: return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(), getAlignFromValue(II->getArgOperand(1))); case Intrinsic::masked_store: return AddrInfo(HVC, II, II->getArgOperand(1), II->getArgOperand(0)->getType(), getAlignFromValue(II->getArgOperand(2))); } } return Optional(); } auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool { return HVC.HST.isTypeForHVX(AI.ValTy); } auto AlignVectors::getPayload(Value *Val) const -> Value * { if (auto *In = dyn_cast(Val)) { Intrinsic::ID ID = 0; if (auto *II = dyn_cast(In)) ID = II->getIntrinsicID(); if (isa(In) || ID == Intrinsic::masked_store) return In->getOperand(0); } return Val; } auto AlignVectors::getMask(Value *Val) const -> Value * { if (auto *II = dyn_cast(Val)) { switch (II->getIntrinsicID()) { case Intrinsic::masked_load: return II->getArgOperand(2); case Intrinsic::masked_store: return II->getArgOperand(3); } } Type *ValTy = getPayload(Val)->getType(); if (auto *VecTy = dyn_cast(ValTy)) { int ElemCount = VecTy->getElementCount().getFixedValue(); return HVC.getFullValue(HVC.getBoolTy(ElemCount)); } return HVC.getFullValue(HVC.getBoolTy()); } auto AlignVectors::getPassThrough(Value *Val) const -> Value * { if (auto *II = dyn_cast(Val)) { if (II->getIntrinsicID() == Intrinsic::masked_load) return II->getArgOperand(3); } return UndefValue::get(getPayload(Val)->getType()); } auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, int Adjust) const -> Value * { // The adjustment is in bytes, but if it's a multiple of the type size, // we don't need to do pointer casts. auto *PtrTy = cast(Ptr->getType()); if (!PtrTy->isOpaque()) { Type *ElemTy = PtrTy->getElementType(); int ElemSize = HVC.getSizeOf(ElemTy); if (Adjust % ElemSize == 0) { Value *Tmp0 = Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize)); return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo()); } } PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext()); Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy); Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0, HVC.getConstInt(Adjust)); return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo()); } auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy, int Alignment) const -> Value * { Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy()); Value *Mask = HVC.getConstInt(-Alignment); Value *And = Builder.CreateAnd(AsInt, Mask); return Builder.CreateIntToPtr(And, ValTy->getPointerTo()); } auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr, int Alignment, Value *Mask, Value *PassThru) const -> Value * { assert(!HVC.isUndef(Mask)); // Should this be allowed? if (HVC.isZero(Mask)) return PassThru; if (Mask == ConstantInt::getTrue(Mask->getType())) return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment)); return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru); } auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr, int Alignment, Value *Mask) const -> Value * { if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask)) return UndefValue::get(Val->getType()); if (Mask == ConstantInt::getTrue(Mask->getType())) return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment)); return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask); } auto AlignVectors::createAddressGroups() -> bool { // An address group created here may contain instructions spanning // multiple basic blocks. AddrList WorkStack; auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair { for (AddrInfo &W : WorkStack) { if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr)) return std::make_pair(W.Inst, *D); } return std::make_pair(nullptr, 0); }; auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void { BasicBlock &Block = *DomN->getBlock(); for (Instruction &I : Block) { auto AI = this->getAddrInfo(I); // Use this-> for gcc6. if (!AI) continue; auto F = findBaseAndOffset(*AI); Instruction *GroupInst; if (Instruction *BI = F.first) { AI->Offset = F.second; GroupInst = BI; } else { WorkStack.push_back(*AI); GroupInst = AI->Inst; } AddrGroups[GroupInst].push_back(*AI); } for (DomTreeNode *C : DomN->children()) Visit(C, Visit); while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block) WorkStack.pop_back(); }; traverseBlock(HVC.DT.getRootNode(), traverseBlock); assert(WorkStack.empty()); // AddrGroups are formed. // Remove groups of size 1. erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; }); // Remove groups that don't use HVX types. erase_if(AddrGroups, [&](auto &G) { return !llvm::any_of( G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); }); }); return !AddrGroups.empty(); } auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList { // Form load groups. // To avoid complications with moving code across basic blocks, only form // groups that are contained within a single basic block. auto getUpwardDeps = [](Instruction *In, Instruction *Base) { BasicBlock *Parent = Base->getParent(); assert(In->getParent() == Parent && "Base and In should be in the same block"); assert(Base->comesBefore(In) && "Base should come before In"); DepList Deps; std::deque WorkQ = {In}; while (!WorkQ.empty()) { Instruction *D = WorkQ.front(); WorkQ.pop_front(); Deps.insert(D); for (Value *Op : D->operands()) { if (auto *I = dyn_cast(Op)) { if (I->getParent() == Parent && Base->comesBefore(I)) WorkQ.push_back(I); } } } return Deps; }; auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { assert(!Move.Main.empty() && "Move group should have non-empty Main"); // Don't mix HVX and non-HVX instructions. if (Move.IsHvx != isHvx(Info)) return false; // Leading instruction in the load group. Instruction *Base = Move.Main.front(); if (Base->getParent() != Info.Inst->getParent()) return false; auto isSafeToMoveToBase = [&](const Instruction *I) { return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator()); }; DepList Deps = getUpwardDeps(Info.Inst, Base); if (!llvm::all_of(Deps, isSafeToMoveToBase)) return false; // The dependencies will be moved together with the load, so make sure // that none of them could be moved independently in another group. Deps.erase(Info.Inst); auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; }; if (llvm::any_of(Deps, inAddrMap)) return false; Move.Main.push_back(Info.Inst); llvm::append_range(Move.Deps, Deps); return true; }; MoveList LoadGroups; for (const AddrInfo &Info : Group) { if (!Info.Inst->mayReadFromMemory()) continue; if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back())) LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true); } // Erase singleton groups. erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); return LoadGroups; } auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList { // Form store groups. // To avoid complications with moving code across basic blocks, only form // groups that are contained within a single basic block. auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) { assert(!Move.Main.empty() && "Move group should have non-empty Main"); // For stores with return values we'd have to collect downward depenencies. // There are no such stores that we handle at the moment, so omit that. assert(Info.Inst->getType()->isVoidTy() && "Not handling stores with return values"); // Don't mix HVX and non-HVX instructions. if (Move.IsHvx != isHvx(Info)) return false; // For stores we need to be careful whether it's safe to move them. // Stores that are otherwise safe to move together may not appear safe // to move over one another (i.e. isSafeToMoveBefore may return false). Instruction *Base = Move.Main.front(); if (Base->getParent() != Info.Inst->getParent()) return false; if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main)) return false; Move.Main.push_back(Info.Inst); return true; }; MoveList StoreGroups; for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) { const AddrInfo &Info = *I; if (!Info.Inst->mayWriteToMemory()) continue; if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back())) StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false); } // Erase singleton groups. erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; }); return StoreGroups; } auto AlignVectors::move(const MoveGroup &Move) const -> bool { assert(!Move.Main.empty() && "Move group should have non-empty Main"); Instruction *Where = Move.Main.front(); if (Move.IsLoad) { // Move all deps to before Where, keeping order. for (Instruction *D : Move.Deps) D->moveBefore(Where); // Move all main instructions to after Where, keeping order. ArrayRef Main(Move.Main); for (Instruction *M : Main.drop_front(1)) { M->moveAfter(Where); Where = M; } } else { // NOTE: Deps are empty for "store" groups. If they need to be // non-empty, decide on the order. assert(Move.Deps.empty()); // Move all main instructions to before Where, inverting order. ArrayRef Main(Move.Main); for (Instruction *M : Main.drop_front(1)) { M->moveBefore(Where); Where = M; } } return Move.Main.size() + Move.Deps.size() > 1; } auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool { // TODO: Needs support for masked loads/stores of "scalar" vectors. if (!Move.IsHvx) return false; // Return the element with the maximum alignment from Range, // where GetValue obtains the value to compare from an element. auto getMaxOf = [](auto Range, auto GetValue) { return *std::max_element( Range.begin(), Range.end(), [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); }); }; const AddrList &BaseInfos = AddrGroups.at(Move.Base); // Conceptually, there is a vector of N bytes covering the addresses // starting from the minimum offset (i.e. Base.Addr+Start). This vector // represents a contiguous memory region that spans all accessed memory // locations. // The correspondence between loaded or stored values will be expressed // in terms of this vector. For example, the 0th element of the vector // from the Base address info will start at byte Start from the beginning // of this conceptual vector. // // This vector will be loaded/stored starting at the nearest down-aligned // address and the amount od the down-alignment will be AlignVal: // valign(load_vector(align_down(Base+Start)), AlignVal) std::set TestSet(Move.Main.begin(), Move.Main.end()); AddrList MoveInfos; llvm::copy_if( BaseInfos, std::back_inserter(MoveInfos), [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); }); // Maximum alignment present in the whole address group. const AddrInfo &WithMaxAlign = getMaxOf(BaseInfos, [](const AddrInfo &AI) { return AI.HaveAlign; }); Align MaxGiven = WithMaxAlign.HaveAlign; // Minimum alignment present in the move address group. const AddrInfo &WithMinOffset = getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; }); const AddrInfo &WithMaxNeeded = getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; }); Align MinNeeded = WithMaxNeeded.NeedAlign; // Set the builder at the top instruction in the move group. Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back(); IRBuilder<> Builder(TopIn); Value *AlignAddr = nullptr; // Actual aligned address. Value *AlignVal = nullptr; // Right-shift amount (for valign). if (MinNeeded <= MaxGiven) { int Start = WithMinOffset.Offset; int OffAtMax = WithMaxAlign.Offset; // Shift the offset of the maximally aligned instruction (OffAtMax) // back by just enough multiples of the required alignment to cover the // distance from Start to OffAtMax. // Calculate the address adjustment amount based on the address with the // maximum alignment. This is to allow a simple gep instruction instead // of potential bitcasts to i8*. int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value()); AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr, WithMaxAlign.ValTy, Adjust); int Diff = Start - (OffAtMax + Adjust); AlignVal = HVC.getConstInt(Diff); // Sanity. assert(Diff >= 0); assert(static_cast(Diff) < MinNeeded.value()); } else { // WithMinOffset is the lowest address in the group, // WithMinOffset.Addr = Base+Start. // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb) // mask off unnecessary bits, so it's ok to just the original pointer as // the alignment amount. // Do an explicit down-alignment of the address to avoid creating an // aligned instruction with an address that is not really aligned. AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr, WithMinOffset.ValTy, MinNeeded.value()); AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy()); } ByteSpan VSpan; for (const AddrInfo &AI : MoveInfos) { VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy), AI.Offset - WithMinOffset.Offset); } // The aligned loads/stores will use blocks that are either scalars, // or HVX vectors. Let "sector" be the unified term for such a block. // blend(scalar, vector) -> sector... int ScLen = Move.IsHvx ? HVC.HST.getVectorLength() : std::max(MinNeeded.value(), 4); assert(!Move.IsHvx || ScLen == 64 || ScLen == 128); assert(Move.IsHvx || ScLen == 4 || ScLen == 8); Type *SecTy = HVC.getByteTy(ScLen); int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen; bool DoAlign = !HVC.isZero(AlignVal); if (Move.IsLoad) { ByteSpan ASpan; auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen)); auto *Undef = UndefValue::get(SecTy); for (int i = 0; i != NumSectors + DoAlign; ++i) { Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); // FIXME: generate a predicated load? Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef); // If vector shifting is potentially needed, accumulate metadata // from source sections of twice the load width. int Start = (i - DoAlign) * ScLen; int Width = (1 + DoAlign) * ScLen; propagateMetadata(cast(Load), VSpan.section(Start, Width).values()); ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen); } if (DoAlign) { for (int j = 0; j != NumSectors; ++j) { ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val, ASpan[j + 1].Seg.Val, AlignVal); } } for (ByteSpan::Block &B : VSpan) { ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos); Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size)); for (ByteSpan::Block &S : ASection) { Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val)); Accum = HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos); } // Instead of casting everything to bytes for the vselect, cast to the // original value type. This will avoid complications with casting masks. // For example, in cases when the original mask applied to i32, it could // be converted to a mask applicable to i8 via pred_typecast intrinsic, // but if the mask is not exactly of HVX length, extra handling would be // needed to make it work. Type *ValTy = getPayload(B.Seg.Val)->getType(); Value *Cast = Builder.CreateBitCast(Accum, ValTy); Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast, getPassThrough(B.Seg.Val)); B.Seg.Val->replaceAllUsesWith(Sel); } } else { // Stores. ByteSpan ASpanV, ASpanM; // Return a vector value corresponding to the input value Val: // either <1 x Val> for scalar Val, or Val itself for vector Val. auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * { Type *Ty = Val->getType(); if (Ty->isVectorTy()) return Val; auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false); return Builder.CreateBitCast(Val, VecTy); }; // Create an extra "undef" sector at the beginning and at the end. // They will be used as the left/right filler in the vlalign step. for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) { // For stores, the size of each section is an aligned vector length. // Adjust the store offsets relative to the section start offset. ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen); Value *AccumV = UndefValue::get(SecTy); Value *AccumM = HVC.getNullValue(SecTy); for (ByteSpan::Block &S : VSection) { Value *Pay = getPayload(S.Seg.Val); Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)), Pay->getType(), HVC.getByteTy()); AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask), S.Seg.Start, S.Seg.Size, S.Pos); AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay), S.Seg.Start, S.Seg.Size, S.Pos); } ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen); ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen); } // vlalign if (DoAlign) { for (int j = 1; j != NumSectors + 2; ++j) { ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val, ASpanV[j].Seg.Val, AlignVal); ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val, ASpanM[j].Seg.Val, AlignVal); } } for (int i = 0; i != NumSectors + DoAlign; ++i) { Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen); Value *Val = ASpanV[i].Seg.Val; Value *Mask = ASpanM[i].Seg.Val; // bytes if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) { Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen, HVC.vlsb(Builder, Mask)); // If vector shifting is potentially needed, accumulate metadata // from source sections of twice the store width. int Start = (i - DoAlign) * ScLen; int Width = (1 + DoAlign) * ScLen; propagateMetadata(cast(Store), VSpan.section(Start, Width).values()); } } } for (auto *Inst : Move.Main) Inst->eraseFromParent(); return true; } auto AlignVectors::run() -> bool { if (!createAddressGroups()) return false; bool Changed = false; MoveList LoadGroups, StoreGroups; for (auto &G : AddrGroups) { llvm::append_range(LoadGroups, createLoadGroups(G.second)); llvm::append_range(StoreGroups, createStoreGroups(G.second)); } for (auto &M : LoadGroups) Changed |= move(M); for (auto &M : StoreGroups) Changed |= move(M); for (auto &M : LoadGroups) Changed |= realignGroup(M); for (auto &M : StoreGroups) Changed |= realignGroup(M); return Changed; } // --- End AlignVectors auto HexagonVectorCombine::run() -> bool { if (!HST.useHVXOps()) return false; bool Changed = AlignVectors(*this).run(); return Changed; } auto HexagonVectorCombine::getIntTy() const -> IntegerType * { return Type::getInt32Ty(F.getContext()); } auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * { assert(ElemCount >= 0); IntegerType *ByteTy = Type::getInt8Ty(F.getContext()); if (ElemCount == 0) return ByteTy; return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false); } auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * { assert(ElemCount >= 0); IntegerType *BoolTy = Type::getInt1Ty(F.getContext()); if (ElemCount == 0) return BoolTy; return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false); } auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * { return ConstantInt::getSigned(getIntTy(), Val); } auto HexagonVectorCombine::isZero(const Value *Val) const -> bool { if (auto *C = dyn_cast(Val)) return C->isZeroValue(); return false; } auto HexagonVectorCombine::getIntValue(const Value *Val) const -> Optional { if (auto *CI = dyn_cast(Val)) return CI->getValue(); return None; } auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool { return isa(Val); } auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int { return getSizeOf(Val->getType()); } auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int { return DL.getTypeStoreSize(const_cast(Ty)).getFixedValue(); } auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int { // The actual type may be shorter than the HVX vector, so determine // the alignment based on subtarget info. if (HST.isTypeForHVX(Ty)) return HST.getVectorLength(); return DL.getABITypeAlign(Ty).value(); } auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * { assert(Ty->isIntOrIntVectorTy()); auto Zero = ConstantInt::get(Ty->getScalarType(), 0); if (auto *VecTy = dyn_cast(Ty)) return ConstantVector::getSplat(VecTy->getElementCount(), Zero); return Zero; } auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * { assert(Ty->isIntOrIntVectorTy()); auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1); if (auto *VecTy = dyn_cast(Ty)) return ConstantVector::getSplat(VecTy->getElementCount(), Minus1); return Minus1; } // Insert bytes [Start..Start+Length) of Src into Dst at byte Where. auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src, int Start, int Length, int Where) const -> Value * { assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType())); int SrcLen = getSizeOf(Src); int DstLen = getSizeOf(Dst); assert(0 <= Start && Start + Length <= SrcLen); assert(0 <= Where && Where + Length <= DstLen); int P2Len = PowerOf2Ceil(SrcLen | DstLen); auto *Undef = UndefValue::get(getByteTy()); Value *P2Src = vresize(Builder, Src, P2Len, Undef); Value *P2Dst = vresize(Builder, Dst, P2Len, Undef); SmallVector SMask(P2Len); for (int i = 0; i != P2Len; ++i) { // If i is in [Where, Where+Length), pick Src[Start+(i-Where)]. // Otherwise, pick Dst[i]; SMask[i] = (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i; } Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask); return vresize(Builder, P2Insert, DstLen, Undef); } auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const -> Value * { assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); assert(isSectorTy(Hi->getType())); if (isZero(Amt)) return Hi; int VecLen = getSizeOf(Hi); if (auto IntAmt = getIntValue(Amt)) return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(), VecLen); if (HST.isTypeForHVX(Hi->getType())) { int HwLen = HST.getVectorLength(); assert(VecLen == HwLen && "Expecting an exact HVX type"); Intrinsic::ID V6_vlalignb = HwLen == 64 ? Intrinsic::hexagon_V6_vlalignb : Intrinsic::hexagon_V6_vlalignb_128B; return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(), {Hi, Lo, Amt}); } if (VecLen == 4) { Value *Pair = concat(Builder, {Lo, Hi}); Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32); Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); return Builder.CreateBitCast(Trunc, Hi->getType()); } if (VecLen == 8) { Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt); return vralignb(Builder, Lo, Hi, Sub); } llvm_unreachable("Unexpected vector length"); } auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const -> Value * { assert(Lo->getType() == Hi->getType() && "Argument type mismatch"); assert(isSectorTy(Lo->getType())); if (isZero(Amt)) return Lo; int VecLen = getSizeOf(Lo); if (auto IntAmt = getIntValue(Amt)) return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen); if (HST.isTypeForHVX(Lo->getType())) { int HwLen = HST.getVectorLength(); assert(VecLen == HwLen && "Expecting an exact HVX type"); Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb : Intrinsic::hexagon_V6_valignb_128B; return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(), {Hi, Lo, Amt}); } if (VecLen == 4) { Value *Pair = concat(Builder, {Lo, Hi}); Value *Shift = Builder.CreateLShr(Pair, Amt); Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext())); return Builder.CreateBitCast(Trunc, Lo->getType()); } if (VecLen == 8) { Type *Int64Ty = Type::getInt64Ty(F.getContext()); Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty); Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty); Function *FI = Intrinsic::getDeclaration(F.getParent(), Intrinsic::hexagon_S2_valignrb); Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt}); return Builder.CreateBitCast(Call, Lo->getType()); } llvm_unreachable("Unexpected vector length"); } // Concatenates a sequence of vectors of the same type. auto HexagonVectorCombine::concat(IRBuilder<> &Builder, ArrayRef Vecs) const -> Value * { assert(!Vecs.empty()); SmallVector SMask; std::vector Work[2]; int ThisW = 0, OtherW = 1; Work[ThisW].assign(Vecs.begin(), Vecs.end()); while (Work[ThisW].size() > 1) { auto *Ty = cast(Work[ThisW].front()->getType()); int ElemCount = Ty->getElementCount().getFixedValue(); SMask.resize(ElemCount * 2); std::iota(SMask.begin(), SMask.end(), 0); Work[OtherW].clear(); if (Work[ThisW].size() % 2 != 0) Work[ThisW].push_back(UndefValue::get(Ty)); for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) { Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i], Work[ThisW][i + 1], SMask); Work[OtherW].push_back(Joined); } std::swap(ThisW, OtherW); } // Since there may have been some undefs appended to make shuffle operands // have the same type, perform the last shuffle to only pick the original // elements. SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType())); std::iota(SMask.begin(), SMask.end(), 0); Value *Total = Work[OtherW].front(); return Builder.CreateShuffleVector(Total, SMask); } auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val, int NewSize, Value *Pad) const -> Value * { assert(isa(Val->getType())); auto *ValTy = cast(Val->getType()); assert(ValTy->getElementType() == Pad->getType()); int CurSize = ValTy->getElementCount().getFixedValue(); if (CurSize == NewSize) return Val; // Truncate? if (CurSize > NewSize) return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize); // Extend. SmallVector SMask(NewSize); std::iota(SMask.begin(), SMask.begin() + CurSize, 0); std::fill(SMask.begin() + CurSize, SMask.end(), CurSize); Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad); return Builder.CreateShuffleVector(Val, PadVec, SMask); } auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy, Type *ToTy) const -> Value * { // Mask is a vector , where each element corresponds to an // element of FromTy. Remap it so that each element will correspond // to an element of ToTy. assert(isa(Mask->getType())); Type *FromSTy = FromTy->getScalarType(); Type *ToSTy = ToTy->getScalarType(); if (FromSTy == ToSTy) return Mask; int FromSize = getSizeOf(FromSTy); int ToSize = getSizeOf(ToSTy); assert(FromSize % ToSize == 0 || ToSize % FromSize == 0); auto *MaskTy = cast(Mask->getType()); int FromCount = MaskTy->getElementCount().getFixedValue(); int ToCount = (FromCount * FromSize) / ToSize; assert((FromCount * FromSize) % ToSize == 0); // Mask -> sext to -> bitcast to -> // -> trunc to . Value *Ext = Builder.CreateSExt( Mask, VectorType::get(FromSTy, FromCount, /*Scalable*/ false)); Value *Cast = Builder.CreateBitCast( Ext, VectorType::get(ToSTy, ToCount, /*Scalable*/ false)); return Builder.CreateTrunc( Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false)); } // Bitcast to bytes, and return least significant bits. auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const -> Value * { Type *ScalarTy = Val->getType()->getScalarType(); if (ScalarTy == getBoolTy()) return Val; Value *Bytes = vbytes(Builder, Val); if (auto *VecTy = dyn_cast(Bytes->getType())) return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy))); // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not // <1 x i1>. return Builder.CreateTrunc(Bytes, getBoolTy()); } // Bitcast to bytes for non-bool. For bool, convert i1 -> i8. auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const -> Value * { Type *ScalarTy = Val->getType()->getScalarType(); if (ScalarTy == getByteTy()) return Val; if (ScalarTy != getBoolTy()) return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val))); // For bool, return a sext from i1 to i8. if (auto *VecTy = dyn_cast(Val->getType())) return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy)); return Builder.CreateSExt(Val, getByteTy()); } auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID, Type *RetTy, ArrayRef Args) const -> Value * { int HwLen = HST.getVectorLength(); Type *BoolTy = Type::getInt1Ty(F.getContext()); Type *Int32Ty = Type::getInt32Ty(F.getContext()); // HVX vector -> v16i32/v32i32 // HVX vector predicate -> v512i1/v1024i1 auto getTypeForIntrin = [&](Type *Ty) -> Type * { if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) { Type *ElemTy = cast(Ty)->getElementType(); if (ElemTy == Int32Ty) return Ty; if (ElemTy == BoolTy) return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false); return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false); } // Non-HVX type. It should be a scalar. assert(Ty == Int32Ty || Ty->isIntegerTy(64)); return Ty; }; auto getCast = [&](IRBuilder<> &Builder, Value *Val, Type *DestTy) -> Value * { Type *SrcTy = Val->getType(); if (SrcTy == DestTy) return Val; if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) { if (cast(SrcTy)->getElementType() == BoolTy) { // This should take care of casts the other way too, for example // v1024i1 -> v32i1. Intrinsic::ID TC = HwLen == 64 ? Intrinsic::hexagon_V6_pred_typecast : Intrinsic::hexagon_V6_pred_typecast_128B; Function *FI = Intrinsic::getDeclaration(F.getParent(), TC, {DestTy, Val->getType()}); return Builder.CreateCall(FI, {Val}); } // Non-predicate HVX vector. return Builder.CreateBitCast(Val, DestTy); } // Non-HVX type. It should be a scalar, and it should already have // a valid type. llvm_unreachable("Unexpected type"); }; SmallVector IntOps; for (Value *A : Args) IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType()))); Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID); Value *Call = Builder.CreateCall(FI, IntOps); Type *CallTy = Call->getType(); if (CallTy == RetTy) return Call; // Scalar types should have RetTy matching the call return type. assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true)); if (cast(CallTy)->getElementType() == BoolTy) return getCast(Builder, Call, RetTy); return Builder.CreateBitCast(Call, RetTy); } auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0, Value *Ptr1) const -> Optional { struct Builder : IRBuilder<> { Builder(BasicBlock *B) : IRBuilder<>(B) {} ~Builder() { for (Instruction *I : llvm::reverse(ToErase)) I->eraseFromParent(); } SmallVector ToErase; }; #define CallBuilder(B, F) \ [&](auto &B_) { \ Value *V = B_.F; \ if (auto *I = dyn_cast(V)) \ B_.ToErase.push_back(I); \ return V; \ }(B) auto Simplify = [&](Value *V) { if (auto *I = dyn_cast(V)) { SimplifyQuery Q(DL, &TLI, &DT, &AC, I); if (Value *S = SimplifyInstruction(I, Q)) return S; } return V; }; auto StripBitCast = [](Value *V) { while (auto *C = dyn_cast(V)) V = C->getOperand(0); return V; }; Ptr0 = StripBitCast(Ptr0); Ptr1 = StripBitCast(Ptr1); if (!isa(Ptr0) || !isa(Ptr1)) return None; auto *Gep0 = cast(Ptr0); auto *Gep1 = cast(Ptr1); if (Gep0->getPointerOperand() != Gep1->getPointerOperand()) return None; Builder B(Gep0->getParent()); int Scale = DL.getTypeStoreSize(Gep0->getSourceElementType()); // FIXME: for now only check GEPs with a single index. if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2) return None; Value *Idx0 = Gep0->getOperand(1); Value *Idx1 = Gep1->getOperand(1); // First, try to simplify the subtraction directly. if (auto *Diff = dyn_cast( Simplify(CallBuilder(B, CreateSub(Idx0, Idx1))))) return Diff->getSExtValue() * Scale; KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT); KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT); APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One); if (Unknown.isAllOnesValue()) return None; Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown); Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU))); Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU))); Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1))); int Diff0 = 0; if (auto *C = dyn_cast(SubU)) { Diff0 = C->getSExtValue(); } else { return None; } Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown); Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK))); Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK))); Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1))); int Diff1 = 0; if (auto *C = dyn_cast(SubK)) { Diff1 = C->getSExtValue(); } else { return None; } return (Diff0 + Diff1) * Scale; #undef CallBuilder } template auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In, BasicBlock::const_iterator To, const T &Ignore) const -> bool { auto getLocOrNone = [this](const Instruction &I) -> Optional { if (const auto *II = dyn_cast(&I)) { switch (II->getIntrinsicID()) { case Intrinsic::masked_load: return MemoryLocation::getForArgument(II, 0, TLI); case Intrinsic::masked_store: return MemoryLocation::getForArgument(II, 1, TLI); } } return MemoryLocation::getOrNone(&I); }; // The source and the destination must be in the same basic block. const BasicBlock &Block = *In.getParent(); assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block); // No PHIs. if (isa(In) || (To != Block.end() && isa(*To))) return false; if (!mayBeMemoryDependent(In)) return true; bool MayWrite = In.mayWriteToMemory(); auto MaybeLoc = getLocOrNone(In); auto From = In.getIterator(); if (From == To) return true; bool MoveUp = (To != Block.end() && To->comesBefore(&In)); auto Range = MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To); for (auto It = Range.first; It != Range.second; ++It) { const Instruction &I = *It; if (llvm::is_contained(Ignore, &I)) continue; // assume intrinsic can be ignored if (auto *II = dyn_cast(&I)) { if (II->getIntrinsicID() == Intrinsic::assume) continue; } // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp. if (I.mayThrow()) return false; if (auto *CB = dyn_cast(&I)) { if (!CB->hasFnAttr(Attribute::WillReturn)) return false; if (!CB->hasFnAttr(Attribute::NoSync)) return false; } if (I.mayReadOrWriteMemory()) { auto MaybeLocI = getLocOrNone(I); if (MayWrite || I.mayWriteToMemory()) { if (!MaybeLoc || !MaybeLocI) return false; if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI)) return false; } } } return true; } #ifndef NDEBUG auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool { if (auto *VecTy = dyn_cast(Ty)) return VecTy->getElementType() == getByteTy(); return false; } auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool { if (!isByteVecTy(Ty)) return false; int Size = getSizeOf(Ty); if (HST.isTypeForHVX(Ty)) return Size == static_cast(HST.getVectorLength()); return Size == 4 || Size == 8; } #endif auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start, int Length) const -> Value * { assert(0 <= Start && Start < Length); SmallVector SMask(Length); std::iota(SMask.begin(), SMask.end(), Start); return Builder.CreateShuffleVector(Lo, Hi, SMask); } // Pass management. namespace llvm { void initializeHexagonVectorCombineLegacyPass(PassRegistry &); FunctionPass *createHexagonVectorCombineLegacyPass(); } // namespace llvm namespace { class HexagonVectorCombineLegacy : public FunctionPass { public: static char ID; HexagonVectorCombineLegacy() : FunctionPass(ID) {} StringRef getPassName() const override { return "Hexagon Vector Combine"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); FunctionPass::getAnalysisUsage(AU); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; AliasAnalysis &AA = getAnalysis().getAAResults(); AssumptionCache &AC = getAnalysis().getAssumptionCache(F); DominatorTree &DT = getAnalysis().getDomTree(); TargetLibraryInfo &TLI = getAnalysis().getTLI(F); auto &TM = getAnalysis().getTM(); HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM); return HVC.run(); } }; } // namespace char HexagonVectorCombineLegacy::ID = 0; INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE, "Hexagon Vector Combine", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE, "Hexagon Vector Combine", false, false) FunctionPass *llvm::createHexagonVectorCombineLegacyPass() { return new HexagonVectorCombineLegacy(); }