//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file // Implementation for the IROutliner which is used by the IROutliner Pass. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/IROutliner.h" #include "llvm/Analysis/IRSimilarityIdentifier.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/PassManager.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/IPO.h" #include #include #include #define DEBUG_TYPE "iroutliner" using namespace llvm; using namespace IRSimilarity; // Set to true if the user wants the ir outliner to run on linkonceodr linkage // functions. This is false by default because the linker can dedupe linkonceodr // functions. Since the outliner is confined to a single module (modulo LTO), // this is off by default. It should, however, be the default behavior in // LTO. static cl::opt EnableLinkOnceODRIROutlining( "enable-linkonceodr-ir-outlining", cl::Hidden, cl::desc("Enable the IR outliner on linkonceodr functions"), cl::init(false)); // This is a debug option to test small pieces of code to ensure that outlining // works correctly. static cl::opt NoCostModel( "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden, cl::desc("Debug option to outline greedily, without restriction that " "calculated benefit outweighs cost")); /// The OutlinableGroup holds all the overarching information for outlining /// a set of regions that are structurally similar to one another, such as the /// types of the overall function, the output blocks, the sets of stores needed /// and a list of the different regions. This information is used in the /// deduplication of extracted regions with the same structure. struct OutlinableGroup { /// The sections that could be outlined std::vector Regions; /// The argument types for the function created as the overall function to /// replace the extracted function for each region. std::vector ArgumentTypes; /// The FunctionType for the overall function. FunctionType *OutlinedFunctionType = nullptr; /// The Function for the collective overall function. Function *OutlinedFunction = nullptr; /// Flag for whether we should not consider this group of OutlinableRegions /// for extraction. bool IgnoreGroup = false; /// The return block for the overall function. BasicBlock *EndBB = nullptr; /// A set containing the different GVN store sets needed. Each array contains /// a sorted list of the different values that need to be stored into output /// registers. DenseSet> OutputGVNCombinations; /// Flag for whether the \ref ArgumentTypes have been defined after the /// extraction of the first region. bool InputTypesSet = false; /// The number of input values in \ref ArgumentTypes. Anything after this /// index in ArgumentTypes is an output argument. unsigned NumAggregateInputs = 0; /// The number of instructions that will be outlined by extracting \ref /// Regions. InstructionCost Benefit = 0; /// The number of added instructions needed for the outlining of the \ref /// Regions. InstructionCost Cost = 0; /// The argument that needs to be marked with the swifterr attribute. If not /// needed, there is no value. Optional SwiftErrorArgument; /// For the \ref Regions, we look at every Value. If it is a constant, /// we check whether it is the same in Region. /// /// \param [in,out] NotSame contains the global value numbers where the /// constant is not always the same, and must be passed in as an argument. void findSameConstants(DenseSet &NotSame); /// For the regions, look at each set of GVN stores needed and account for /// each combination. Add an argument to the argument types if there is /// more than one combination. /// /// \param [in] M - The module we are outlining from. void collectGVNStoreSets(Module &M); }; /// Move the contents of \p SourceBB to before the last instruction of \p /// TargetBB. /// \param SourceBB - the BasicBlock to pull Instructions from. /// \param TargetBB - the BasicBlock to put Instruction into. static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) { BasicBlock::iterator BBCurr, BBEnd, BBNext; for (BBCurr = SourceBB.begin(), BBEnd = SourceBB.end(); BBCurr != BBEnd; BBCurr = BBNext) { BBNext = std::next(BBCurr); BBCurr->moveBefore(TargetBB, TargetBB.end()); } } void OutlinableRegion::splitCandidate() { assert(!CandidateSplit && "Candidate already split!"); Instruction *StartInst = (*Candidate->begin()).Inst; Instruction *EndInst = (*Candidate->end()).Inst; assert(StartInst && EndInst && "Expected a start and end instruction?"); StartBB = StartInst->getParent(); PrevBB = StartBB; // The basic block gets split like so: // block: block: // inst1 inst1 // inst2 inst2 // region1 br block_to_outline // region2 block_to_outline: // region3 -> region1 // region4 region2 // inst3 region3 // inst4 region4 // br block_after_outline // block_after_outline: // inst3 // inst4 std::string OriginalName = PrevBB->getName().str(); StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline"); // This is the case for the inner block since we do not have to include // multiple blocks. EndBB = StartBB; FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline"); CandidateSplit = true; } void OutlinableRegion::reattachCandidate() { assert(CandidateSplit && "Candidate is not split!"); // The basic block gets reattached like so: // block: block: // inst1 inst1 // inst2 inst2 // br block_to_outline region1 // block_to_outline: -> region2 // region1 region3 // region2 region4 // region3 inst3 // region4 inst4 // br block_after_outline // block_after_outline: // inst3 // inst4 assert(StartBB != nullptr && "StartBB for Candidate is not defined!"); assert(FollowBB != nullptr && "StartBB for Candidate is not defined!"); // StartBB should only have one predecessor since we put an unconditional // branch at the end of PrevBB when we split the BasicBlock. PrevBB = StartBB->getSinglePredecessor(); assert(PrevBB != nullptr && "No Predecessor for the region start basic block!"); assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!"); assert(EndBB->getTerminator() && "Terminator removed from EndBB!"); PrevBB->getTerminator()->eraseFromParent(); EndBB->getTerminator()->eraseFromParent(); moveBBContents(*StartBB, *PrevBB); BasicBlock *PlacementBB = PrevBB; if (StartBB != EndBB) PlacementBB = EndBB; moveBBContents(*FollowBB, *PlacementBB); PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB); PrevBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB); StartBB->eraseFromParent(); FollowBB->eraseFromParent(); // Make sure to save changes back to the StartBB. StartBB = PrevBB; EndBB = nullptr; PrevBB = nullptr; FollowBB = nullptr; CandidateSplit = false; } /// Find whether \p V matches the Constants previously found for the \p GVN. /// /// \param V - The value to check for consistency. /// \param GVN - The global value number assigned to \p V. /// \param GVNToConstant - The mapping of global value number to Constants. /// \returns true if the Value matches the Constant mapped to by V and false if /// it \p V is a Constant but does not match. /// \returns None if \p V is not a Constant. static Optional constantMatches(Value *V, unsigned GVN, DenseMap &GVNToConstant) { // See if we have a constants Constant *CST = dyn_cast(V); if (!CST) return None; // Holds a mapping from a global value number to a Constant. DenseMap::iterator GVNToConstantIt; bool Inserted; // If we have a constant, try to make a new entry in the GVNToConstant. std::tie(GVNToConstantIt, Inserted) = GVNToConstant.insert(std::make_pair(GVN, CST)); // If it was found and is not equal, it is not the same. We do not // handle this case yet, and exit early. if (Inserted || (GVNToConstantIt->second == CST)) return true; return false; } InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) { InstructionCost Benefit = 0; // Estimate the benefit of outlining a specific sections of the program. We // delegate mostly this task to the TargetTransformInfo so that if the target // has specific changes, we can have a more accurate estimate. // However, getInstructionCost delegates the code size calculation for // arithmetic instructions to getArithmeticInstrCost in // include/Analysis/TargetTransformImpl.h, where it always estimates that the // code size for a division and remainder instruction to be equal to 4, and // everything else to 1. This is not an accurate representation of the // division instruction for targets that have a native division instruction. // To be overly conservative, we only add 1 to the number of instructions for // each division instruction. for (Instruction &I : *StartBB) { switch (I.getOpcode()) { case Instruction::FDiv: case Instruction::FRem: case Instruction::SDiv: case Instruction::SRem: case Instruction::UDiv: case Instruction::URem: Benefit += 1; break; default: Benefit += TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); break; } } return Benefit; } /// Find whether \p Region matches the global value numbering to Constant /// mapping found so far. /// /// \param Region - The OutlinableRegion we are checking for constants /// \param GVNToConstant - The mapping of global value number to Constants. /// \param NotSame - The set of global value numbers that do not have the same /// constant in each region. /// \returns true if all Constants are the same in every use of a Constant in \p /// Region and false if not static bool collectRegionsConstants(OutlinableRegion &Region, DenseMap &GVNToConstant, DenseSet &NotSame) { bool ConstantsTheSame = true; IRSimilarityCandidate &C = *Region.Candidate; for (IRInstructionData &ID : C) { // Iterate over the operands in an instruction. If the global value number, // assigned by the IRSimilarityCandidate, has been seen before, we check if // the the number has been found to be not the same value in each instance. for (Value *V : ID.OperVals) { Optional GVNOpt = C.getGVN(V); assert(GVNOpt.hasValue() && "Expected a GVN for operand?"); unsigned GVN = GVNOpt.getValue(); // Check if this global value has been found to not be the same already. if (NotSame.contains(GVN)) { if (isa(V)) ConstantsTheSame = false; continue; } // If it has been the same so far, we check the value for if the // associated Constant value match the previous instances of the same // global value number. If the global value does not map to a Constant, // it is considered to not be the same value. Optional ConstantMatches = constantMatches(V, GVN, GVNToConstant); if (ConstantMatches.hasValue()) { if (ConstantMatches.getValue()) continue; else ConstantsTheSame = false; } // While this value is a register, it might not have been previously, // make sure we don't already have a constant mapped to this global value // number. if (GVNToConstant.find(GVN) != GVNToConstant.end()) ConstantsTheSame = false; NotSame.insert(GVN); } } return ConstantsTheSame; } void OutlinableGroup::findSameConstants(DenseSet &NotSame) { DenseMap GVNToConstant; for (OutlinableRegion *Region : Regions) collectRegionsConstants(*Region, GVNToConstant, NotSame); } void OutlinableGroup::collectGVNStoreSets(Module &M) { for (OutlinableRegion *OS : Regions) OutputGVNCombinations.insert(OS->GVNStores); // We are adding an extracted argument to decide between which output path // to use in the basic block. It is used in a switch statement and only // needs to be an integer. if (OutputGVNCombinations.size() > 1) ArgumentTypes.push_back(Type::getInt32Ty(M.getContext())); } /// Get the subprogram if it exists for one of the outlined regions. /// /// \param [in] Group - The set of regions to find a subprogram for. /// \returns the subprogram if it exists, or nullptr. static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) { for (OutlinableRegion *OS : Group.Regions) if (Function *F = OS->Call->getFunction()) if (DISubprogram *SP = F->getSubprogram()) return SP; return nullptr; } Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group, unsigned FunctionNameSuffix) { assert(!Group.OutlinedFunction && "Function is already defined!"); Group.OutlinedFunctionType = FunctionType::get( Type::getVoidTy(M.getContext()), Group.ArgumentTypes, false); // These functions will only be called from within the same module, so // we can set an internal linkage. Group.OutlinedFunction = Function::Create( Group.OutlinedFunctionType, GlobalValue::InternalLinkage, "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M); // Transfer the swifterr attribute to the correct function parameter. if (Group.SwiftErrorArgument.hasValue()) Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(), Attribute::SwiftError); Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize); Group.OutlinedFunction->addFnAttr(Attribute::MinSize); // If there's a DISubprogram associated with this outlined function, then // emit debug info for the outlined function. if (DISubprogram *SP = getSubprogramOrNull(Group)) { Function *F = Group.OutlinedFunction; // We have a DISubprogram. Get its DICompileUnit. DICompileUnit *CU = SP->getUnit(); DIBuilder DB(M, true, CU); DIFile *Unit = SP->getFile(); Mangler Mg; // Get the mangled name of the function for the linkage name. std::string Dummy; llvm::raw_string_ostream MangledNameStream(Dummy); Mg.getNameWithPrefix(MangledNameStream, F, false); DISubprogram *OutlinedSP = DB.createFunction( Unit /* Context */, F->getName(), MangledNameStream.str(), Unit /* File */, 0 /* Line 0 is reserved for compiler-generated code. */, DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */ 0, /* Line 0 is reserved for compiler-generated code. */ DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, /* Outlined code is optimized code by definition. */ DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); // Don't add any new variables to the subprogram. DB.finalizeSubprogram(OutlinedSP); // Attach subprogram to the function. F->setSubprogram(OutlinedSP); // We're done with the DIBuilder. DB.finalize(); } return Group.OutlinedFunction; } /// Move each BasicBlock in \p Old to \p New. /// /// \param [in] Old - The function to move the basic blocks from. /// \param [in] New - The function to move the basic blocks to. /// \returns the first return block for the function in New. static BasicBlock *moveFunctionData(Function &Old, Function &New) { Function::iterator CurrBB, NextBB, FinalBB; BasicBlock *NewEnd = nullptr; std::vector DebugInsts; for (CurrBB = Old.begin(), FinalBB = Old.end(); CurrBB != FinalBB; CurrBB = NextBB) { NextBB = std::next(CurrBB); CurrBB->removeFromParent(); CurrBB->insertInto(&New); Instruction *I = CurrBB->getTerminator(); if (isa(I)) NewEnd = &(*CurrBB); for (Instruction &Val : *CurrBB) { // We must handle the scoping of called functions differently than // other outlined instructions. if (!isa(&Val)) { // Remove the debug information for outlined functions. Val.setDebugLoc(DebugLoc()); continue; } // From this point we are only handling call instructions. CallInst *CI = cast(&Val); // We add any debug statements here, to be removed after. Since the // instructions originate from many different locations in the program, // it will cause incorrect reporting from a debugger if we keep the // same debug instructions. if (isa(CI)) { DebugInsts.push_back(&Val); continue; } // Edit the scope of called functions inside of outlined functions. if (DISubprogram *SP = New.getSubprogram()) { DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP); Val.setDebugLoc(DI); } } for (Instruction *I : DebugInsts) I->eraseFromParent(); } assert(NewEnd && "No return instruction for new function?"); return NewEnd; } /// Find the the constants that will need to be lifted into arguments /// as they are not the same in each instance of the region. /// /// \param [in] C - The IRSimilarityCandidate containing the region we are /// analyzing. /// \param [in] NotSame - The set of global value numbers that do not have a /// single Constant across all OutlinableRegions similar to \p C. /// \param [out] Inputs - The list containing the global value numbers of the /// arguments needed for the region of code. static void findConstants(IRSimilarityCandidate &C, DenseSet &NotSame, std::vector &Inputs) { DenseSet Seen; // Iterate over the instructions, and find what constants will need to be // extracted into arguments. for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end(); IDIt != EndIDIt; IDIt++) { for (Value *V : (*IDIt).OperVals) { // Since these are stored before any outlining, they will be in the // global value numbering. unsigned GVN = C.getGVN(V).getValue(); if (isa(V)) if (NotSame.contains(GVN) && !Seen.contains(GVN)) { Inputs.push_back(GVN); Seen.insert(GVN); } } } } /// Find the GVN for the inputs that have been found by the CodeExtractor. /// /// \param [in] C - The IRSimilarityCandidate containing the region we are /// analyzing. /// \param [in] CurrentInputs - The set of inputs found by the /// CodeExtractor. /// \param [in] OutputMappings - The mapping of values that have been replaced /// by a new output value. /// \param [out] EndInputNumbers - The global value numbers for the extracted /// arguments. static void mapInputsToGVNs(IRSimilarityCandidate &C, SetVector &CurrentInputs, const DenseMap &OutputMappings, std::vector &EndInputNumbers) { // Get the Global Value Number for each input. We check if the Value has been // replaced by a different value at output, and use the original value before // replacement. for (Value *Input : CurrentInputs) { assert(Input && "Have a nullptr as an input"); if (OutputMappings.find(Input) != OutputMappings.end()) Input = OutputMappings.find(Input)->second; assert(C.getGVN(Input).hasValue() && "Could not find a numbering for the given input"); EndInputNumbers.push_back(C.getGVN(Input).getValue()); } } /// Find the original value for the \p ArgInput values if any one of them was /// replaced during a previous extraction. /// /// \param [in] ArgInputs - The inputs to be extracted by the code extractor. /// \param [in] OutputMappings - The mapping of values that have been replaced /// by a new output value. /// \param [out] RemappedArgInputs - The remapped values according to /// \p OutputMappings that will be extracted. static void remapExtractedInputs(const ArrayRef ArgInputs, const DenseMap &OutputMappings, SetVector &RemappedArgInputs) { // Get the global value number for each input that will be extracted as an // argument by the code extractor, remapping if needed for reloaded values. for (Value *Input : ArgInputs) { if (OutputMappings.find(Input) != OutputMappings.end()) Input = OutputMappings.find(Input)->second; RemappedArgInputs.insert(Input); } } /// Find the input GVNs and the output values for a region of Instructions. /// Using the code extractor, we collect the inputs to the extracted function. /// /// The \p Region can be identified as needing to be ignored in this function. /// It should be checked whether it should be ignored after a call to this /// function. /// /// \param [in,out] Region - The region of code to be analyzed. /// \param [out] InputGVNs - The global value numbers for the extracted /// arguments. /// \param [in] NotSame - The global value numbers in the region that do not /// have the same constant value in the regions structurally similar to /// \p Region. /// \param [in] OutputMappings - The mapping of values that have been replaced /// by a new output value after extraction. /// \param [out] ArgInputs - The values of the inputs to the extracted function. /// \param [out] Outputs - The set of values extracted by the CodeExtractor /// as outputs. static void getCodeExtractorArguments( OutlinableRegion &Region, std::vector &InputGVNs, DenseSet &NotSame, DenseMap &OutputMappings, SetVector &ArgInputs, SetVector &Outputs) { IRSimilarityCandidate &C = *Region.Candidate; // OverallInputs are the inputs to the region found by the CodeExtractor, // SinkCands and HoistCands are used by the CodeExtractor to find sunken // allocas of values whose lifetimes are contained completely within the // outlined region. PremappedInputs are the arguments found by the // CodeExtractor, removing conditions such as sunken allocas, but that // may need to be remapped due to the extracted output values replacing // the original values. We use DummyOutputs for this first run of finding // inputs and outputs since the outputs could change during findAllocas, // the correct set of extracted outputs will be in the final Outputs ValueSet. SetVector OverallInputs, PremappedInputs, SinkCands, HoistCands, DummyOutputs; // Use the code extractor to get the inputs and outputs, without sunken // allocas or removing llvm.assumes. CodeExtractor *CE = Region.CE; CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands); assert(Region.StartBB && "Region must have a start BasicBlock!"); Function *OrigF = Region.StartBB->getParent(); CodeExtractorAnalysisCache CEAC(*OrigF); BasicBlock *Dummy = nullptr; // The region may be ineligible due to VarArgs in the parent function. In this // case we ignore the region. if (!CE->isEligible()) { Region.IgnoreRegion = true; return; } // Find if any values are going to be sunk into the function when extracted CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy); CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands); // TODO: Support regions with sunken allocas: values whose lifetimes are // contained completely within the outlined region. These are not guaranteed // to be the same in every region, so we must elevate them all to arguments // when they appear. If these values are not equal, it means there is some // Input in OverallInputs that was removed for ArgInputs. if (OverallInputs.size() != PremappedInputs.size()) { Region.IgnoreRegion = true; return; } findConstants(C, NotSame, InputGVNs); mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs); remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings, ArgInputs); // Sort the GVNs, since we now have constants included in the \ref InputGVNs // we need to make sure they are in a deterministic order. stable_sort(InputGVNs); } /// Look over the inputs and map each input argument to an argument in the /// overall function for the OutlinableRegions. This creates a way to replace /// the arguments of the extracted function with the arguments of the new /// overall function. /// /// \param [in,out] Region - The region of code to be analyzed. /// \param [in] InputGVNs - The global value numbering of the input values /// collected. /// \param [in] ArgInputs - The values of the arguments to the extracted /// function. static void findExtractedInputToOverallInputMapping(OutlinableRegion &Region, std::vector &InputGVNs, SetVector &ArgInputs) { IRSimilarityCandidate &C = *Region.Candidate; OutlinableGroup &Group = *Region.Parent; // This counts the argument number in the overall function. unsigned TypeIndex = 0; // This counts the argument number in the extracted function. unsigned OriginalIndex = 0; // Find the mapping of the extracted arguments to the arguments for the // overall function. Since there may be extra arguments in the overall // function to account for the extracted constants, we have two different // counters as we find extracted arguments, and as we come across overall // arguments. for (unsigned InputVal : InputGVNs) { Optional InputOpt = C.fromGVN(InputVal); assert(InputOpt.hasValue() && "Global value number not found?"); Value *Input = InputOpt.getValue(); if (!Group.InputTypesSet) { Group.ArgumentTypes.push_back(Input->getType()); // If the input value has a swifterr attribute, make sure to mark the // argument in the overall function. if (Input->isSwiftError()) { assert( !Group.SwiftErrorArgument.hasValue() && "Argument already marked with swifterr for this OutlinableGroup!"); Group.SwiftErrorArgument = TypeIndex; } } // Check if we have a constant. If we do add it to the overall argument // number to Constant map for the region, and continue to the next input. if (Constant *CST = dyn_cast(Input)) { Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST)); TypeIndex++; continue; } // It is not a constant, we create the mapping from extracted argument list // to the overall argument list. assert(ArgInputs.count(Input) && "Input cannot be found!"); Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex)); Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex)); OriginalIndex++; TypeIndex++; } // If the function type definitions for the OutlinableGroup holding the region // have not been set, set the length of the inputs here. We should have the // same inputs for all of the different regions contained in the // OutlinableGroup since they are all structurally similar to one another. if (!Group.InputTypesSet) { Group.NumAggregateInputs = TypeIndex; Group.InputTypesSet = true; } Region.NumExtractedInputs = OriginalIndex; } /// Create a mapping of the output arguments for the \p Region to the output /// arguments of the overall outlined function. /// /// \param [in,out] Region - The region of code to be analyzed. /// \param [in] Outputs - The values found by the code extractor. static void findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region, ArrayRef Outputs) { OutlinableGroup &Group = *Region.Parent; IRSimilarityCandidate &C = *Region.Candidate; // This counts the argument number in the extracted function. unsigned OriginalIndex = Region.NumExtractedInputs; // This counts the argument number in the overall function. unsigned TypeIndex = Group.NumAggregateInputs; bool TypeFound; DenseSet AggArgsUsed; // Iterate over the output types and identify if there is an aggregate pointer // type whose base type matches the current output type. If there is, we mark // that we will use this output register for this value. If not we add another // type to the overall argument type list. We also store the GVNs used for // stores to identify which values will need to be moved into an special // block that holds the stores to the output registers. for (Value *Output : Outputs) { TypeFound = false; // We can do this since it is a result value, and will have a number // that is necessarily the same. BUT if in the future, the instructions // do not have to be in same order, but are functionally the same, we will // have to use a different scheme, as one-to-one correspondence is not // guaranteed. unsigned GlobalValue = C.getGVN(Output).getValue(); unsigned ArgumentSize = Group.ArgumentTypes.size(); for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) { if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType())) continue; if (AggArgsUsed.contains(Jdx)) continue; TypeFound = true; AggArgsUsed.insert(Jdx); Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx)); Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex)); Region.GVNStores.push_back(GlobalValue); break; } // We were unable to find an unused type in the output type set that matches // the output, so we add a pointer type to the argument types of the overall // function to handle this output and create a mapping to it. if (!TypeFound) { Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType())); AggArgsUsed.insert(Group.ArgumentTypes.size() - 1); Region.ExtractedArgToAgg.insert( std::make_pair(OriginalIndex, Group.ArgumentTypes.size() - 1)); Region.AggArgToExtracted.insert( std::make_pair(Group.ArgumentTypes.size() - 1, OriginalIndex)); Region.GVNStores.push_back(GlobalValue); } stable_sort(Region.GVNStores); OriginalIndex++; TypeIndex++; } } void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region, DenseSet &NotSame) { std::vector Inputs; SetVector ArgInputs, Outputs; getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs, Outputs); if (Region.IgnoreRegion) return; // Map the inputs found by the CodeExtractor to the arguments found for // the overall function. findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs); // Map the outputs found by the CodeExtractor to the arguments found for // the overall function. findExtractedOutputToOverallOutputMapping(Region, Outputs.getArrayRef()); } /// Replace the extracted function in the Region with a call to the overall /// function constructed from the deduplicated similar regions, replacing and /// remapping the values passed to the extracted function as arguments to the /// new arguments of the overall function. /// /// \param [in] M - The module to outline from. /// \param [in] Region - The regions of extracted code to be replaced with a new /// function. /// \returns a call instruction with the replaced function. CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) { std::vector NewCallArgs; DenseMap::iterator ArgPair; OutlinableGroup &Group = *Region.Parent; CallInst *Call = Region.Call; assert(Call && "Call to replace is nullptr?"); Function *AggFunc = Group.OutlinedFunction; assert(AggFunc && "Function to replace with is nullptr?"); // If the arguments are the same size, there are not values that need to be // made argument, or different output registers to handle. We can simply // replace the called function in this case. if (AggFunc->arg_size() == Call->arg_size()) { LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " << *AggFunc << " with same number of arguments\n"); Call->setCalledFunction(AggFunc); return Call; } // We have a different number of arguments than the new function, so // we need to use our previously mappings off extracted argument to overall // function argument, and constants to overall function argument to create the // new argument list. for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) { if (AggArgIdx == AggFunc->arg_size() - 1 && Group.OutputGVNCombinations.size() > 1) { // If we are on the last argument, and we need to differentiate between // output blocks, add an integer to the argument list to determine // what block to take LLVM_DEBUG(dbgs() << "Set switch block argument to " << Region.OutputBlockNum << "\n"); NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()), Region.OutputBlockNum)); continue; } ArgPair = Region.AggArgToExtracted.find(AggArgIdx); if (ArgPair != Region.AggArgToExtracted.end()) { Value *ArgumentValue = Call->getArgOperand(ArgPair->second); // If we found the mapping from the extracted function to the overall // function, we simply add it to the argument list. We use the same // value, it just needs to honor the new order of arguments. LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " << *ArgumentValue << "\n"); NewCallArgs.push_back(ArgumentValue); continue; } // If it is a constant, we simply add it to the argument list as a value. if (Region.AggArgToConstant.find(AggArgIdx) != Region.AggArgToConstant.end()) { Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second; LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value " << *CST << "\n"); NewCallArgs.push_back(CST); continue; } // Add a nullptr value if the argument is not found in the extracted // function. If we cannot find a value, it means it is not in use // for the region, so we should not pass anything to it. LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n"); NewCallArgs.push_back(ConstantPointerNull::get( static_cast(AggFunc->getArg(AggArgIdx)->getType()))); } LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to " << *AggFunc << " with new set of arguments\n"); // Create the new call instruction and erase the old one. Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "", Call); // It is possible that the call to the outlined function is either the first // instruction is in the new block, the last instruction, or both. If either // of these is the case, we need to make sure that we replace the instruction // in the IRInstructionData struct with the new call. CallInst *OldCall = Region.Call; if (Region.NewFront->Inst == OldCall) Region.NewFront->Inst = Call; if (Region.NewBack->Inst == OldCall) Region.NewBack->Inst = Call; // Transfer any debug information. Call->setDebugLoc(Region.Call->getDebugLoc()); // Remove the old instruction. OldCall->eraseFromParent(); Region.Call = Call; // Make sure that the argument in the new function has the SwiftError // argument. if (Group.SwiftErrorArgument.hasValue()) Call->addParamAttr(Group.SwiftErrorArgument.getValue(), Attribute::SwiftError); return Call; } // Within an extracted function, replace the argument uses of the extracted // region with the arguments of the function for an OutlinableGroup. // /// \param [in] Region - The region of extracted code to be changed. /// \param [in,out] OutputBB - The BasicBlock for the output stores for this /// region. static void replaceArgumentUses(OutlinableRegion &Region, BasicBlock *OutputBB) { OutlinableGroup &Group = *Region.Parent; assert(Region.ExtractedFunction && "Region has no extracted function?"); for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size(); ArgIdx++) { assert(Region.ExtractedArgToAgg.find(ArgIdx) != Region.ExtractedArgToAgg.end() && "No mapping from extracted to outlined?"); unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second; Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx); Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx); // The argument is an input, so we can simply replace it with the overall // argument value if (ArgIdx < Region.NumExtractedInputs) { LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function " << *Region.ExtractedFunction << " with " << *AggArg << " in function " << *Group.OutlinedFunction << "\n"); Arg->replaceAllUsesWith(AggArg); continue; } // If we are replacing an output, we place the store value in its own // block inside the overall function before replacing the use of the output // in the function. assert(Arg->hasOneUse() && "Output argument can only have one use"); User *InstAsUser = Arg->user_back(); assert(InstAsUser && "User is nullptr!"); Instruction *I = cast(InstAsUser); I->setDebugLoc(DebugLoc()); LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to " << *OutputBB << "\n"); I->moveBefore(*OutputBB, OutputBB->end()); LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function " << *Region.ExtractedFunction << " with " << *AggArg << " in function " << *Group.OutlinedFunction << "\n"); Arg->replaceAllUsesWith(AggArg); } } /// Within an extracted function, replace the constants that need to be lifted /// into arguments with the actual argument. /// /// \param Region [in] - The region of extracted code to be changed. void replaceConstants(OutlinableRegion &Region) { OutlinableGroup &Group = *Region.Parent; // Iterate over the constants that need to be elevated into arguments for (std::pair &Const : Region.AggArgToConstant) { unsigned AggArgIdx = Const.first; Function *OutlinedFunction = Group.OutlinedFunction; assert(OutlinedFunction && "Overall Function is not defined?"); Constant *CST = Const.second; Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx); // Identify the argument it will be elevated to, and replace instances of // that constant in the function. // TODO: If in the future constants do not have one global value number, // i.e. a constant 1 could be mapped to several values, this check will // have to be more strict. It cannot be using only replaceUsesWithIf. LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST << " in function " << *OutlinedFunction << " with " << *Arg << "\n"); CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) { if (Instruction *I = dyn_cast(U.getUser())) return I->getFunction() == OutlinedFunction; return false; }); } } /// For the given function, find all the nondebug or lifetime instructions, /// and return them as a vector. Exclude any blocks in \p ExludeBlocks. /// /// \param [in] F - The function we collect the instructions from. /// \param [in] ExcludeBlocks - BasicBlocks to ignore. /// \returns the list of instructions extracted. static std::vector collectRelevantInstructions(Function &F, DenseSet &ExcludeBlocks) { std::vector RelevantInstructions; for (BasicBlock &BB : F) { if (ExcludeBlocks.contains(&BB)) continue; for (Instruction &Inst : BB) { if (Inst.isLifetimeStartOrEnd()) continue; if (isa(Inst)) continue; RelevantInstructions.push_back(&Inst); } } return RelevantInstructions; } /// It is possible that there is a basic block that already performs the same /// stores. This returns a duplicate block, if it exists /// /// \param OutputBB [in] the block we are looking for a duplicate of. /// \param OutputStoreBBs [in] The existing output blocks. /// \returns an optional value with the number output block if there is a match. Optional findDuplicateOutputBlock(BasicBlock *OutputBB, ArrayRef OutputStoreBBs) { bool WrongInst = false; bool WrongSize = false; unsigned MatchingNum = 0; for (BasicBlock *CompBB : OutputStoreBBs) { WrongInst = false; if (CompBB->size() - 1 != OutputBB->size()) { WrongSize = true; MatchingNum++; continue; } WrongSize = false; BasicBlock::iterator NIt = OutputBB->begin(); for (Instruction &I : *CompBB) { if (isa(&I)) continue; if (!I.isIdenticalTo(&(*NIt))) { WrongInst = true; break; } NIt++; } if (!WrongInst && !WrongSize) return MatchingNum; MatchingNum++; } return None; } /// For the outlined section, move needed the StoreInsts for the output /// registers into their own block. Then, determine if there is a duplicate /// output block already created. /// /// \param [in] OG - The OutlinableGroup of regions to be outlined. /// \param [in] Region - The OutlinableRegion that is being analyzed. /// \param [in,out] OutputBB - the block that stores for this region will be /// placed in. /// \param [in] EndBB - the final block of the extracted function. /// \param [in] OutputMappings - OutputMappings the mapping of values that have /// been replaced by a new output value. /// \param [in,out] OutputStoreBBs - The existing output blocks. static void alignOutputBlockWithAggFunc(OutlinableGroup &OG, OutlinableRegion &Region, BasicBlock *OutputBB, BasicBlock *EndBB, const DenseMap &OutputMappings, std::vector &OutputStoreBBs) { DenseSet ValuesToFind(Region.GVNStores.begin(), Region.GVNStores.end()); // We iterate over the instructions in the extracted function, and find the // global value number of the instructions. If we find a value that should // be contained in a store, we replace the uses of the value with the value // from the overall function, so that the store is storing the correct // value from the overall function. DenseSet ExcludeBBs(OutputStoreBBs.begin(), OutputStoreBBs.end()); ExcludeBBs.insert(OutputBB); std::vector ExtractedFunctionInsts = collectRelevantInstructions(*(Region.ExtractedFunction), ExcludeBBs); std::vector OverallFunctionInsts = collectRelevantInstructions(*OG.OutlinedFunction, ExcludeBBs); assert(ExtractedFunctionInsts.size() == OverallFunctionInsts.size() && "Number of relevant instructions not equal!"); unsigned NumInstructions = ExtractedFunctionInsts.size(); for (unsigned Idx = 0; Idx < NumInstructions; Idx++) { Value *V = ExtractedFunctionInsts[Idx]; if (OutputMappings.find(V) != OutputMappings.end()) V = OutputMappings.find(V)->second; Optional GVN = Region.Candidate->getGVN(V); // If we have found one of the stored values for output, replace the value // with the corresponding one from the overall function. if (GVN.hasValue() && ValuesToFind.erase(GVN.getValue())) { V->replaceAllUsesWith(OverallFunctionInsts[Idx]); if (ValuesToFind.size() == 0) break; } if (ValuesToFind.size() == 0) break; } assert(ValuesToFind.size() == 0 && "Not all store values were handled!"); // If the size of the block is 0, then there are no stores, and we do not // need to save this block. if (OutputBB->size() == 0) { Region.OutputBlockNum = -1; OutputBB->eraseFromParent(); return; } // Determine is there is a duplicate block. Optional MatchingBB = findDuplicateOutputBlock(OutputBB, OutputStoreBBs); // If there is, we remove the new output block. If it does not, // we add it to our list of output blocks. if (MatchingBB.hasValue()) { LLVM_DEBUG(dbgs() << "Set output block for region in function" << Region.ExtractedFunction << " to " << MatchingBB.getValue()); Region.OutputBlockNum = MatchingBB.getValue(); OutputBB->eraseFromParent(); return; } Region.OutputBlockNum = OutputStoreBBs.size(); LLVM_DEBUG(dbgs() << "Create output block for region in" << Region.ExtractedFunction << " to " << *OutputBB); OutputStoreBBs.push_back(OutputBB); BranchInst::Create(EndBB, OutputBB); } /// Create the switch statement for outlined function to differentiate between /// all the output blocks. /// /// For the outlined section, determine if an outlined block already exists that /// matches the needed stores for the extracted section. /// \param [in] M - The module we are outlining from. /// \param [in] OG - The group of regions to be outlined. /// \param [in] EndBB - The final block of the extracted function. /// \param [in,out] OutputStoreBBs - The existing output blocks. void createSwitchStatement(Module &M, OutlinableGroup &OG, BasicBlock *EndBB, ArrayRef OutputStoreBBs) { // We only need the switch statement if there is more than one store // combination. if (OG.OutputGVNCombinations.size() > 1) { Function *AggFunc = OG.OutlinedFunction; // Create a final block BasicBlock *ReturnBlock = BasicBlock::Create(M.getContext(), "final_block", AggFunc); Instruction *Term = EndBB->getTerminator(); Term->moveBefore(*ReturnBlock, ReturnBlock->end()); // Put the switch statement in the old end basic block for the function with // a fall through to the new return block LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for " << OutputStoreBBs.size() << "\n"); SwitchInst *SwitchI = SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1), ReturnBlock, OutputStoreBBs.size(), EndBB); unsigned Idx = 0; for (BasicBlock *BB : OutputStoreBBs) { SwitchI->addCase(ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB); Term = BB->getTerminator(); Term->setSuccessor(0, ReturnBlock); Idx++; } return; } // If there needs to be stores, move them from the output block to the end // block to save on branching instructions. if (OutputStoreBBs.size() == 1) { LLVM_DEBUG(dbgs() << "Move store instructions to the end block in " << *OG.OutlinedFunction << "\n"); BasicBlock *OutputBlock = OutputStoreBBs[0]; Instruction *Term = OutputBlock->getTerminator(); Term->eraseFromParent(); Term = EndBB->getTerminator(); moveBBContents(*OutputBlock, *EndBB); Term->moveBefore(*EndBB, EndBB->end()); OutputBlock->eraseFromParent(); } } /// Fill the new function that will serve as the replacement function for all of /// the extracted regions of a certain structure from the first region in the /// list of regions. Replace this first region's extracted function with the /// new overall function. /// /// \param [in] M - The module we are outlining from. /// \param [in] CurrentGroup - The group of regions to be outlined. /// \param [in,out] OutputStoreBBs - The output blocks for each different /// set of stores needed for the different functions. /// \param [in,out] FuncsToRemove - Extracted functions to erase from module /// once outlining is complete. static void fillOverallFunction(Module &M, OutlinableGroup &CurrentGroup, std::vector &OutputStoreBBs, std::vector &FuncsToRemove) { OutlinableRegion *CurrentOS = CurrentGroup.Regions[0]; // Move first extracted function's instructions into new function. LLVM_DEBUG(dbgs() << "Move instructions from " << *CurrentOS->ExtractedFunction << " to instruction " << *CurrentGroup.OutlinedFunction << "\n"); CurrentGroup.EndBB = moveFunctionData(*CurrentOS->ExtractedFunction, *CurrentGroup.OutlinedFunction); // Transfer the attributes from the function to the new function. for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttributes()) CurrentGroup.OutlinedFunction->addFnAttr(A); // Create an output block for the first extracted function. BasicBlock *NewBB = BasicBlock::Create( M.getContext(), Twine("output_block_") + Twine(static_cast(0)), CurrentGroup.OutlinedFunction); CurrentOS->OutputBlockNum = 0; replaceArgumentUses(*CurrentOS, NewBB); replaceConstants(*CurrentOS); // If the new basic block has no new stores, we can erase it from the module. // It it does, we create a branch instruction to the last basic block from the // new one. if (NewBB->size() == 0) { CurrentOS->OutputBlockNum = -1; NewBB->eraseFromParent(); } else { BranchInst::Create(CurrentGroup.EndBB, NewBB); OutputStoreBBs.push_back(NewBB); } // Replace the call to the extracted function with the outlined function. CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); // We only delete the extracted functions at the end since we may need to // reference instructions contained in them for mapping purposes. FuncsToRemove.push_back(CurrentOS->ExtractedFunction); } void IROutliner::deduplicateExtractedSections( Module &M, OutlinableGroup &CurrentGroup, std::vector &FuncsToRemove, unsigned &OutlinedFunctionNum) { createFunction(M, CurrentGroup, OutlinedFunctionNum); std::vector OutputStoreBBs; OutlinableRegion *CurrentOS; fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove); for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) { CurrentOS = CurrentGroup.Regions[Idx]; AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction, *CurrentOS->ExtractedFunction); // Create a new BasicBlock to hold the needed store instructions. BasicBlock *NewBB = BasicBlock::Create( M.getContext(), "output_block_" + std::to_string(Idx), CurrentGroup.OutlinedFunction); replaceArgumentUses(*CurrentOS, NewBB); alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBB, CurrentGroup.EndBB, OutputMappings, OutputStoreBBs); CurrentOS->Call = replaceCalledFunction(M, *CurrentOS); FuncsToRemove.push_back(CurrentOS->ExtractedFunction); } // Create a switch statement to handle the different output schemes. createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBB, OutputStoreBBs); OutlinedFunctionNum++; } void IROutliner::pruneIncompatibleRegions( std::vector &CandidateVec, OutlinableGroup &CurrentGroup) { bool PreviouslyOutlined; // Sort from beginning to end, so the IRSimilarityCandidates are in order. stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS, const IRSimilarityCandidate &RHS) { return LHS.getStartIdx() < RHS.getStartIdx(); }); unsigned CurrentEndIdx = 0; for (IRSimilarityCandidate &IRSC : CandidateVec) { PreviouslyOutlined = false; unsigned StartIdx = IRSC.getStartIdx(); unsigned EndIdx = IRSC.getEndIdx(); for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) if (Outlined.contains(Idx)) { PreviouslyOutlined = true; break; } if (PreviouslyOutlined) continue; // TODO: If in the future we can outline across BasicBlocks, we will need to // check all BasicBlocks contained in the region. if (IRSC.getStartBB()->hasAddressTaken()) continue; if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() && !OutlineFromLinkODRs) continue; // Greedily prune out any regions that will overlap with already chosen // regions. if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx) continue; bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) { // We check if there is a discrepancy between the InstructionDataList // and the actual next instruction in the module. If there is, it means // that an extra instruction was added, likely by the CodeExtractor. // Since we do not have any similarity data about this particular // instruction, we cannot confidently outline it, and must discard this // candidate. if (std::next(ID.getIterator())->Inst != ID.Inst->getNextNonDebugInstruction()) return true; return !this->InstructionClassifier.visit(ID.Inst); }); if (BadInst) continue; OutlinableRegion *OS = new (RegionAllocator.Allocate()) OutlinableRegion(IRSC, CurrentGroup); CurrentGroup.Regions.push_back(OS); CurrentEndIdx = EndIdx; } } InstructionCost IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) { InstructionCost RegionBenefit = 0; for (OutlinableRegion *Region : CurrentGroup.Regions) { TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); // We add the number of instructions in the region to the benefit as an // estimate as to how much will be removed. RegionBenefit += Region->getBenefit(TTI); LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit << " saved instructions to overfall benefit.\n"); } return RegionBenefit; } InstructionCost IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) { InstructionCost OverallCost = 0; for (OutlinableRegion *Region : CurrentGroup.Regions) { TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent()); // Each output incurs a load after the call, so we add that to the cost. for (unsigned OutputGVN : Region->GVNStores) { Optional OV = Region->Candidate->fromGVN(OutputGVN); assert(OV.hasValue() && "Could not find value for GVN?"); Value *V = OV.getValue(); InstructionCost LoadCost = TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, TargetTransformInfo::TCK_CodeSize); LLVM_DEBUG(dbgs() << "Adding: " << LoadCost << " instructions to cost for output of type " << *V->getType() << "\n"); OverallCost += LoadCost; } } return OverallCost; } /// Find the extra instructions needed to handle any output values for the /// region. /// /// \param [in] M - The Module to outline from. /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze. /// \param [in] TTI - The TargetTransformInfo used to collect information for /// new instruction costs. /// \returns the additional cost to handle the outputs. static InstructionCost findCostForOutputBlocks(Module &M, OutlinableGroup &CurrentGroup, TargetTransformInfo &TTI) { InstructionCost OutputCost = 0; for (const ArrayRef &OutputUse : CurrentGroup.OutputGVNCombinations) { IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate; for (unsigned GVN : OutputUse) { Optional OV = Candidate.fromGVN(GVN); assert(OV.hasValue() && "Could not find value for GVN?"); Value *V = OV.getValue(); InstructionCost StoreCost = TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0, TargetTransformInfo::TCK_CodeSize); // An instruction cost is added for each store set that needs to occur for // various output combinations inside the function, plus a branch to // return to the exit block. LLVM_DEBUG(dbgs() << "Adding: " << StoreCost << " instructions to cost for output of type " << *V->getType() << "\n"); OutputCost += StoreCost; } InstructionCost BranchCost = TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for" << " a branch instruction\n"); OutputCost += BranchCost; } // If there is more than one output scheme, we must have a comparison and // branch for each different item in the switch statement. if (CurrentGroup.OutputGVNCombinations.size() > 1) { InstructionCost ComparisonCost = TTI.getCmpSelInstrCost( Instruction::ICmp, Type::getInt32Ty(M.getContext()), Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE, TargetTransformInfo::TCK_CodeSize); InstructionCost BranchCost = TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize); unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size(); InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks; LLVM_DEBUG(dbgs() << "Adding: " << TotalCost << " instructions for each switch case for each different" << " output path in a function\n"); OutputCost += TotalCost; } return OutputCost; } void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) { InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup); CurrentGroup.Benefit += RegionBenefit; LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n"); InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup); CurrentGroup.Cost += OutputReloadCost; LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); InstructionCost AverageRegionBenefit = RegionBenefit / CurrentGroup.Regions.size(); unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size(); unsigned NumRegions = CurrentGroup.Regions.size(); TargetTransformInfo &TTI = getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction()); // We add one region to the cost once, to account for the instructions added // inside of the newly created function. LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit << " instructions to cost for body of new function.\n"); CurrentGroup.Cost += AverageRegionBenefit; LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); // For each argument, we must add an instruction for loading the argument // out of the register and into a value inside of the newly outlined function. LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum << " instructions to cost for each argument in the new" << " function.\n"); CurrentGroup.Cost += OverallArgumentNum * TargetTransformInfo::TCC_Basic; LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); // Each argument needs to either be loaded into a register or onto the stack. // Some arguments will only be loaded into the stack once the argument // registers are filled. LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum << " instructions to cost for each argument in the new" << " function " << NumRegions << " times for the " << "needed argument handling at the call site.\n"); CurrentGroup.Cost += 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions; LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI); LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n"); } void IROutliner::updateOutputMapping(OutlinableRegion &Region, ArrayRef Outputs, LoadInst *LI) { // For and load instructions following the call Value *Operand = LI->getPointerOperand(); Optional OutputIdx = None; // Find if the operand it is an output register. for (unsigned ArgIdx = Region.NumExtractedInputs; ArgIdx < Region.Call->arg_size(); ArgIdx++) { if (Operand == Region.Call->getArgOperand(ArgIdx)) { OutputIdx = ArgIdx - Region.NumExtractedInputs; break; } } // If we found an output register, place a mapping of the new value // to the original in the mapping. if (!OutputIdx.hasValue()) return; if (OutputMappings.find(Outputs[OutputIdx.getValue()]) == OutputMappings.end()) { LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to " << *Outputs[OutputIdx.getValue()] << "\n"); OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()])); } else { Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second; LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to " << *Outputs[OutputIdx.getValue()] << "\n"); OutputMappings.insert(std::make_pair(LI, Orig)); } } bool IROutliner::extractSection(OutlinableRegion &Region) { SetVector ArgInputs, Outputs, SinkCands; Region.CE->findInputsOutputs(ArgInputs, Outputs, SinkCands); assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!"); assert(Region.FollowBB && "FollowBB for the OutlinableRegion is nullptr!"); Function *OrigF = Region.StartBB->getParent(); CodeExtractorAnalysisCache CEAC(*OrigF); Region.ExtractedFunction = Region.CE->extractCodeRegion(CEAC); // If the extraction was successful, find the BasicBlock, and reassign the // OutlinableRegion blocks if (!Region.ExtractedFunction) { LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB << "\n"); Region.reattachCandidate(); return false; } BasicBlock *RewrittenBB = Region.FollowBB->getSinglePredecessor(); Region.StartBB = RewrittenBB; Region.EndBB = RewrittenBB; // The sequences of outlinable regions has now changed. We must fix the // IRInstructionDataList for consistency. Although they may not be illegal // instructions, they should not be compared with anything else as they // should not be outlined in this round. So marking these as illegal is // allowed. IRInstructionDataList *IDL = Region.Candidate->front()->IDL; Instruction *BeginRewritten = &*RewrittenBB->begin(); Instruction *EndRewritten = &*RewrittenBB->begin(); Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData( *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL); Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData( *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL); // Insert the first IRInstructionData of the new region in front of the // first IRInstructionData of the IRSimilarityCandidate. IDL->insert(Region.Candidate->begin(), *Region.NewFront); // Insert the first IRInstructionData of the new region after the // last IRInstructionData of the IRSimilarityCandidate. IDL->insert(Region.Candidate->end(), *Region.NewBack); // Remove the IRInstructionData from the IRSimilarityCandidate. IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end())); assert(RewrittenBB != nullptr && "Could not find a predecessor after extraction!"); // Iterate over the new set of instructions to find the new call // instruction. for (Instruction &I : *RewrittenBB) if (CallInst *CI = dyn_cast(&I)) { if (Region.ExtractedFunction == CI->getCalledFunction()) Region.Call = CI; } else if (LoadInst *LI = dyn_cast(&I)) updateOutputMapping(Region, Outputs.getArrayRef(), LI); Region.reattachCandidate(); return true; } unsigned IROutliner::doOutline(Module &M) { // Find the possible similarity sections. IRSimilarityIdentifier &Identifier = getIRSI(M); SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity(); // Sort them by size of extracted sections unsigned OutlinedFunctionNum = 0; // If we only have one SimilarityGroup in SimilarityCandidates, we do not have // to sort them by the potential number of instructions to be outlined if (SimilarityCandidates.size() > 1) llvm::stable_sort(SimilarityCandidates, [](const std::vector &LHS, const std::vector &RHS) { return LHS[0].getLength() * LHS.size() > RHS[0].getLength() * RHS.size(); }); DenseSet NotSame; std::vector FuncsToRemove; // Iterate over the possible sets of similarity. for (SimilarityGroup &CandidateVec : SimilarityCandidates) { OutlinableGroup CurrentGroup; // Remove entries that were previously outlined pruneIncompatibleRegions(CandidateVec, CurrentGroup); // We pruned the number of regions to 0 to 1, meaning that it's not worth // trying to outlined since there is no compatible similar instance of this // code. if (CurrentGroup.Regions.size() < 2) continue; // Determine if there are any values that are the same constant throughout // each section in the set. NotSame.clear(); CurrentGroup.findSameConstants(NotSame); if (CurrentGroup.IgnoreGroup) continue; // Create a CodeExtractor for each outlinable region. Identify inputs and // outputs for each section using the code extractor and create the argument // types for the Aggregate Outlining Function. std::vector OutlinedRegions; for (OutlinableRegion *OS : CurrentGroup.Regions) { // Break the outlinable region out of its parent BasicBlock into its own // BasicBlocks (see function implementation). OS->splitCandidate(); std::vector BE = {OS->StartBB}; OS->CE = new (ExtractorAllocator.Allocate()) CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false, false, "outlined"); findAddInputsOutputs(M, *OS, NotSame); if (!OS->IgnoreRegion) OutlinedRegions.push_back(OS); else OS->reattachCandidate(); } CurrentGroup.Regions = std::move(OutlinedRegions); if (CurrentGroup.Regions.empty()) continue; CurrentGroup.collectGVNStoreSets(M); if (CostModel) findCostBenefit(M, CurrentGroup); // If we are adhering to the cost model, reattach all the candidates if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) { for (OutlinableRegion *OS : CurrentGroup.Regions) OS->reattachCandidate(); OptimizationRemarkEmitter &ORE = getORE( *CurrentGroup.Regions[0]->Candidate->getFunction()); ORE.emit([&]() { IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize", C->frontInstruction()); R << "did not outline " << ore::NV(std::to_string(CurrentGroup.Regions.size())) << " regions due to estimated increase of " << ore::NV("InstructionIncrease", CurrentGroup.Cost - CurrentGroup.Benefit) << " instructions at locations "; interleave( CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), [&R](OutlinableRegion *Region) { R << ore::NV( "DebugLoc", Region->Candidate->frontInstruction()->getDebugLoc()); }, [&R]() { R << " "; }); return R; }); continue; } LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost << " and benefit " << CurrentGroup.Benefit << "\n"); // Create functions out of all the sections, and mark them as outlined. OutlinedRegions.clear(); for (OutlinableRegion *OS : CurrentGroup.Regions) { bool FunctionOutlined = extractSection(*OS); if (FunctionOutlined) { unsigned StartIdx = OS->Candidate->getStartIdx(); unsigned EndIdx = OS->Candidate->getEndIdx(); for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++) Outlined.insert(Idx); OutlinedRegions.push_back(OS); } } LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size() << " with benefit " << CurrentGroup.Benefit << " and cost " << CurrentGroup.Cost << "\n"); CurrentGroup.Regions = std::move(OutlinedRegions); if (CurrentGroup.Regions.empty()) continue; OptimizationRemarkEmitter &ORE = getORE(*CurrentGroup.Regions[0]->Call->getFunction()); ORE.emit([&]() { IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate; OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst); R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size())) << " regions with decrease of " << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost) << " instructions at locations "; interleave( CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(), [&R](OutlinableRegion *Region) { R << ore::NV("DebugLoc", Region->Candidate->frontInstruction()->getDebugLoc()); }, [&R]() { R << " "; }); return R; }); deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove, OutlinedFunctionNum); } for (Function *F : FuncsToRemove) F->eraseFromParent(); return OutlinedFunctionNum; } bool IROutliner::run(Module &M) { CostModel = !NoCostModel; OutlineFromLinkODRs = EnableLinkOnceODRIROutlining; return doOutline(M) > 0; } // Pass Manager Boilerplate class IROutlinerLegacyPass : public ModulePass { public: static char ID; IROutlinerLegacyPass() : ModulePass(ID) { initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); } bool runOnModule(Module &M) override; }; bool IROutlinerLegacyPass::runOnModule(Module &M) { if (skipModule(M)) return false; std::unique_ptr ORE; auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { ORE.reset(new OptimizationRemarkEmitter(&F)); return *ORE.get(); }; auto GTTI = [this](Function &F) -> TargetTransformInfo & { return this->getAnalysis().getTTI(F); }; auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & { return this->getAnalysis().getIRSI(); }; return IROutliner(GTTI, GIRSI, GORE).run(M); } PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) { auto &FAM = AM.getResult(M).getManager(); std::function GTTI = [&FAM](Function &F) -> TargetTransformInfo & { return FAM.getResult(F); }; std::function GIRSI = [&AM](Module &M) -> IRSimilarityIdentifier & { return AM.getResult(M); }; std::unique_ptr ORE; std::function GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & { ORE.reset(new OptimizationRemarkEmitter(&F)); return *ORE.get(); }; if (IROutliner(GTTI, GIRSI, GORE).run(M)) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } char IROutlinerLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, false) INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass) INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false, false) ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }