//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass performs a simple dominator tree walk that eliminates trivially // redundant instructions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/EarlyCSE.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/GuardUtils.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/RecyclingAllocator.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" #include "llvm/Transforms/Utils/GuardUtils.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "early-cse" STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); STATISTIC(NumCSE, "Number of instructions CSE'd"); STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); STATISTIC(NumCSECall, "Number of call instructions CSE'd"); STATISTIC(NumDSE, "Number of trivial dead stores removed"); DEBUG_COUNTER(CSECounter, "early-cse", "Controls which instructions are removed"); static cl::opt EarlyCSEMssaOptCap( "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " "for faster compile. Caps the MemorySSA clobbering calls.")); static cl::opt EarlyCSEDebugHash( "earlycse-debug-hash", cl::init(false), cl::Hidden, cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " "function is well-behaved w.r.t. its isEqual predicate")); //===----------------------------------------------------------------------===// // SimpleValue //===----------------------------------------------------------------------===// namespace { /// Struct representing the available values in the scoped hash table. struct SimpleValue { Instruction *Inst; SimpleValue(Instruction *I) : Inst(I) { assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); } bool isSentinel() const { return Inst == DenseMapInfo::getEmptyKey() || Inst == DenseMapInfo::getTombstoneKey(); } static bool canHandle(Instruction *Inst) { // This can only handle non-void readnone functions. // Also handled are constrained intrinsic that look like the types // of instruction handled below (UnaryOperator, etc.). if (CallInst *CI = dyn_cast(Inst)) { if (Function *F = CI->getCalledFunction()) { switch ((Intrinsic::ID)F->getIntrinsicID()) { case Intrinsic::experimental_constrained_fadd: case Intrinsic::experimental_constrained_fsub: case Intrinsic::experimental_constrained_fmul: case Intrinsic::experimental_constrained_fdiv: case Intrinsic::experimental_constrained_frem: case Intrinsic::experimental_constrained_fptosi: case Intrinsic::experimental_constrained_sitofp: case Intrinsic::experimental_constrained_fptoui: case Intrinsic::experimental_constrained_uitofp: case Intrinsic::experimental_constrained_fcmp: case Intrinsic::experimental_constrained_fcmps: { auto *CFP = cast(CI); return CFP->isDefaultFPEnvironment(); } } } return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); } return isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst); } }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static inline SimpleValue getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline SimpleValue getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(SimpleValue Val); static bool isEqual(SimpleValue LHS, SimpleValue RHS); }; } // end namespace llvm /// Match a 'select' including an optional 'not's of the condition. static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, Value *&B, SelectPatternFlavor &Flavor) { // Return false if V is not even a select. if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) return false; // Look through a 'not' of the condition operand by swapping A/B. Value *CondNot; if (match(Cond, m_Not(m_Value(CondNot)))) { Cond = CondNot; std::swap(A, B); } // Match canonical forms of min/max. We are not using ValueTracking's // more powerful matchSelectPattern() because it may rely on instruction flags // such as "nsw". That would be incompatible with the current hashing // mechanism that may remove flags to increase the likelihood of CSE. Flavor = SPF_UNKNOWN; CmpInst::Predicate Pred; if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { // Check for commuted variants of min/max by swapping predicate. // If we do not match the standard or commuted patterns, this is not a // recognized form of min/max, but it is still a select, so return true. if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) return true; Pred = ICmpInst::getSwappedPredicate(Pred); } switch (Pred) { case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; // Non-strict inequalities. case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; default: break; } return true; } static unsigned getHashValueImpl(SimpleValue Val) { Instruction *Inst = Val.Inst; // Hash in all of the operands as pointers. if (BinaryOperator *BinOp = dyn_cast(Inst)) { Value *LHS = BinOp->getOperand(0); Value *RHS = BinOp->getOperand(1); if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) std::swap(LHS, RHS); return hash_combine(BinOp->getOpcode(), LHS, RHS); } if (CmpInst *CI = dyn_cast(Inst)) { // Compares can be commuted by swapping the comparands and // updating the predicate. Choose the form that has the // comparands in sorted order, or in the case of a tie, the // one with the lower predicate. Value *LHS = CI->getOperand(0); Value *RHS = CI->getOperand(1); CmpInst::Predicate Pred = CI->getPredicate(); CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { std::swap(LHS, RHS); Pred = SwappedPred; } return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); } // Hash general selects to allow matching commuted true/false operands. SelectPatternFlavor SPF; Value *Cond, *A, *B; if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { // Hash min/max (cmp + select) to allow for commuted operands. // Min/max may also have non-canonical compare predicate (eg, the compare for // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the // compare. // TODO: We should also detect FP min/max. if (SPF == SPF_SMIN || SPF == SPF_SMAX || SPF == SPF_UMIN || SPF == SPF_UMAX) { if (A > B) std::swap(A, B); return hash_combine(Inst->getOpcode(), SPF, A, B); } // Hash general selects to allow matching commuted true/false operands. // If we do not have a compare as the condition, just hash in the condition. CmpInst::Predicate Pred; Value *X, *Y; if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) return hash_combine(Inst->getOpcode(), Cond, A, B); // Similar to cmp normalization (above) - canonicalize the predicate value: // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A if (CmpInst::getInversePredicate(Pred) < Pred) { Pred = CmpInst::getInversePredicate(Pred); std::swap(A, B); } return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); } if (CastInst *CI = dyn_cast(Inst)) return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); if (FreezeInst *FI = dyn_cast(Inst)) return hash_combine(FI->getOpcode(), FI->getOperand(0)); if (const ExtractValueInst *EVI = dyn_cast(Inst)) return hash_combine(EVI->getOpcode(), EVI->getOperand(0), hash_combine_range(EVI->idx_begin(), EVI->idx_end())); if (const InsertValueInst *IVI = dyn_cast(Inst)) return hash_combine(IVI->getOpcode(), IVI->getOperand(0), IVI->getOperand(1), hash_combine_range(IVI->idx_begin(), IVI->idx_end())); assert((isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst)) && "Invalid/unknown instruction"); // Handle intrinsics with commutative operands. // TODO: Extend this to handle intrinsics with >2 operands where the 1st // 2 operands are commutative. auto *II = dyn_cast(Inst); if (II && II->isCommutative() && II->getNumArgOperands() == 2) { Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); if (LHS > RHS) std::swap(LHS, RHS); return hash_combine(II->getOpcode(), LHS, RHS); } // gc.relocate is 'special' call: its second and third operands are // not real values, but indices into statepoint's argument list. // Get values they point to. if (const GCRelocateInst *GCR = dyn_cast(Inst)) return hash_combine(GCR->getOpcode(), GCR->getOperand(0), GCR->getBasePtr(), GCR->getDerivedPtr()); // Mix in the opcode. return hash_combine( Inst->getOpcode(), hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); } unsigned DenseMapInfo::getHashValue(SimpleValue Val) { #ifndef NDEBUG // If -earlycse-debug-hash was specified, return a constant -- this // will force all hashing to collide, so we'll exhaustively search // the table for a match, and the assertion in isEqual will fire if // there's a bug causing equal keys to hash differently. if (EarlyCSEDebugHash) return 0; #endif return getHashValueImpl(Val); } static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; if (LHSI->getOpcode() != RHSI->getOpcode()) return false; if (LHSI->isIdenticalToWhenDefined(RHSI)) return true; // If we're not strictly identical, we still might be a commutable instruction if (BinaryOperator *LHSBinOp = dyn_cast(LHSI)) { if (!LHSBinOp->isCommutative()) return false; assert(isa(RHSI) && "same opcode, but different instruction type?"); BinaryOperator *RHSBinOp = cast(RHSI); // Commuted equality return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); } if (CmpInst *LHSCmp = dyn_cast(LHSI)) { assert(isa(RHSI) && "same opcode, but different instruction type?"); CmpInst *RHSCmp = cast(RHSI); // Commuted equality return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); } // TODO: Extend this for >2 args by matching the trailing N-2 args. auto *LII = dyn_cast(LHSI); auto *RII = dyn_cast(RHSI); if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && LII->isCommutative() && LII->getNumArgOperands() == 2) { return LII->getArgOperand(0) == RII->getArgOperand(1) && LII->getArgOperand(1) == RII->getArgOperand(0); } // See comment above in `getHashValue()`. if (const GCRelocateInst *GCR1 = dyn_cast(LHSI)) if (const GCRelocateInst *GCR2 = dyn_cast(RHSI)) return GCR1->getOperand(0) == GCR2->getOperand(0) && GCR1->getBasePtr() == GCR2->getBasePtr() && GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); // Min/max can occur with commuted operands, non-canonical predicates, // and/or non-canonical operands. // Selects can be non-trivially equivalent via inverted conditions and swaps. SelectPatternFlavor LSPF, RSPF; Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { if (LSPF == RSPF) { // TODO: We should also detect FP min/max. if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || LSPF == SPF_UMIN || LSPF == SPF_UMAX) return ((LHSA == RHSA && LHSB == RHSB) || (LHSA == RHSB && LHSB == RHSA)); // select Cond, A, B <--> select not(Cond), B, A if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) return true; } // If the true/false operands are swapped and the conditions are compares // with inverted predicates, the selects are equal: // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A // // This also handles patterns with a double-negation in the sense of not + // inverse, because we looked through a 'not' in the matching function and // swapped A/B: // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A // // This intentionally does NOT handle patterns with a double-negation in // the sense of not + not, because doing so could result in values // comparing // as equal that hash differently in the min/max cases like: // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y // ^ hashes as min ^ would not hash as min // In the context of the EarlyCSE pass, however, such cases never reach // this code, as we simplify the double-negation before hashing the second // select (and so still succeed at CSEing them). if (LHSA == RHSB && LHSB == RHSA) { CmpInst::Predicate PredL, PredR; Value *X, *Y; if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && CmpInst::getInversePredicate(PredL) == PredR) return true; } } return false; } bool DenseMapInfo::isEqual(SimpleValue LHS, SimpleValue RHS) { // These comparisons are nontrivial, so assert that equality implies // hash equality (DenseMap demands this as an invariant). bool Result = isEqualImpl(LHS, RHS); assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || getHashValueImpl(LHS) == getHashValueImpl(RHS)); return Result; } //===----------------------------------------------------------------------===// // CallValue //===----------------------------------------------------------------------===// namespace { /// Struct representing the available call values in the scoped hash /// table. struct CallValue { Instruction *Inst; CallValue(Instruction *I) : Inst(I) { assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); } bool isSentinel() const { return Inst == DenseMapInfo::getEmptyKey() || Inst == DenseMapInfo::getTombstoneKey(); } static bool canHandle(Instruction *Inst) { // Don't value number anything that returns void. if (Inst->getType()->isVoidTy()) return false; CallInst *CI = dyn_cast(Inst); if (!CI || !CI->onlyReadsMemory()) return false; return true; } }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static inline CallValue getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline CallValue getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(CallValue Val); static bool isEqual(CallValue LHS, CallValue RHS); }; } // end namespace llvm unsigned DenseMapInfo::getHashValue(CallValue Val) { Instruction *Inst = Val.Inst; // Hash all of the operands as pointers and mix in the opcode. return hash_combine( Inst->getOpcode(), hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); } bool DenseMapInfo::isEqual(CallValue LHS, CallValue RHS) { Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; return LHSI->isIdenticalTo(RHSI); } //===----------------------------------------------------------------------===// // EarlyCSE implementation //===----------------------------------------------------------------------===// namespace { /// A simple and fast domtree-based CSE pass. /// /// This pass does a simple depth-first walk over the dominator tree, /// eliminating trivially redundant instructions and using instsimplify to /// canonicalize things as it goes. It is intended to be fast and catch obvious /// cases so that instcombine and other passes are more effective. It is /// expected that a later pass of GVN will catch the interesting/hard cases. class EarlyCSE { public: const TargetLibraryInfo &TLI; const TargetTransformInfo &TTI; DominatorTree &DT; AssumptionCache &AC; const SimplifyQuery SQ; MemorySSA *MSSA; std::unique_ptr MSSAUpdater; using AllocatorTy = RecyclingAllocator>; using ScopedHTType = ScopedHashTable, AllocatorTy>; /// A scoped hash table of the current values of all of our simple /// scalar expressions. /// /// As we walk down the domtree, we look to see if instructions are in this: /// if so, we replace them with what we find, otherwise we insert them so /// that dominated values can succeed in their lookup. ScopedHTType AvailableValues; /// A scoped hash table of the current values of previously encountered /// memory locations. /// /// This allows us to get efficient access to dominating loads or stores when /// we have a fully redundant load. In addition to the most recent load, we /// keep track of a generation count of the read, which is compared against /// the current generation count. The current generation count is incremented /// after every possibly writing memory operation, which ensures that we only /// CSE loads with other loads that have no intervening store. Ordering /// events (such as fences or atomic instructions) increment the generation /// count as well; essentially, we model these as writes to all possible /// locations. Note that atomic and/or volatile loads and stores can be /// present the table; it is the responsibility of the consumer to inspect /// the atomicity/volatility if needed. struct LoadValue { Instruction *DefInst = nullptr; unsigned Generation = 0; int MatchingId = -1; bool IsAtomic = false; LoadValue() = default; LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, bool IsAtomic) : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), IsAtomic(IsAtomic) {} }; using LoadMapAllocator = RecyclingAllocator>; using LoadHTType = ScopedHashTable, LoadMapAllocator>; LoadHTType AvailableLoads; // A scoped hash table mapping memory locations (represented as typed // addresses) to generation numbers at which that memory location became // (henceforth indefinitely) invariant. using InvariantMapAllocator = RecyclingAllocator>; using InvariantHTType = ScopedHashTable, InvariantMapAllocator>; InvariantHTType AvailableInvariants; /// A scoped hash table of the current values of read-only call /// values. /// /// It uses the same generation count as loads. using CallHTType = ScopedHashTable>; CallHTType AvailableCalls; /// This is the current generation of the memory value. unsigned CurrentGeneration = 0; /// Set up the EarlyCSE runner for a particular function. EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, DominatorTree &DT, AssumptionCache &AC, MemorySSA *MSSA) : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), MSSAUpdater(std::make_unique(MSSA)) {} bool run(); private: unsigned ClobberCounter = 0; // Almost a POD, but needs to call the constructors for the scoped hash // tables so that a new scope gets pushed on. These are RAII so that the // scope gets popped when the NodeScope is destroyed. class NodeScope { public: NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) : Scope(AvailableValues), LoadScope(AvailableLoads), InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} NodeScope(const NodeScope &) = delete; NodeScope &operator=(const NodeScope &) = delete; private: ScopedHTType::ScopeTy Scope; LoadHTType::ScopeTy LoadScope; InvariantHTType::ScopeTy InvariantScope; CallHTType::ScopeTy CallScope; }; // Contains all the needed information to create a stack for doing a depth // first traversal of the tree. This includes scopes for values, loads, and // calls as well as the generation. There is a child iterator so that the // children do not need to be store separately. class StackNode { public: StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, DomTreeNode::const_iterator end) : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls) {} StackNode(const StackNode &) = delete; StackNode &operator=(const StackNode &) = delete; // Accessors. unsigned currentGeneration() const { return CurrentGeneration; } unsigned childGeneration() const { return ChildGeneration; } void childGeneration(unsigned generation) { ChildGeneration = generation; } DomTreeNode *node() { return Node; } DomTreeNode::const_iterator childIter() const { return ChildIter; } DomTreeNode *nextChild() { DomTreeNode *child = *ChildIter; ++ChildIter; return child; } DomTreeNode::const_iterator end() const { return EndIter; } bool isProcessed() const { return Processed; } void process() { Processed = true; } private: unsigned CurrentGeneration; unsigned ChildGeneration; DomTreeNode *Node; DomTreeNode::const_iterator ChildIter; DomTreeNode::const_iterator EndIter; NodeScope Scopes; bool Processed = false; }; /// Wrapper class to handle memory instructions, including loads, /// stores and intrinsic loads and stores defined by the target. class ParseMemoryInst { public: ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) : Inst(Inst) { if (IntrinsicInst *II = dyn_cast(Inst)) { IntrID = II->getIntrinsicID(); if (TTI.getTgtMemIntrinsic(II, Info)) return; if (isHandledNonTargetIntrinsic(IntrID)) { switch (IntrID) { case Intrinsic::masked_load: Info.PtrVal = Inst->getOperand(0); Info.MatchingId = Intrinsic::masked_load; Info.ReadMem = true; Info.WriteMem = false; Info.IsVolatile = false; break; case Intrinsic::masked_store: Info.PtrVal = Inst->getOperand(1); // Use the ID of masked load as the "matching id". This will // prevent matching non-masked loads/stores with masked ones // (which could be done), but at the moment, the code here // does not support matching intrinsics with non-intrinsics, // so keep the MatchingIds specific to masked instructions // for now (TODO). Info.MatchingId = Intrinsic::masked_load; Info.ReadMem = false; Info.WriteMem = true; Info.IsVolatile = false; break; } } } } Instruction *get() { return Inst; } const Instruction *get() const { return Inst; } bool isLoad() const { if (IntrID != 0) return Info.ReadMem; return isa(Inst); } bool isStore() const { if (IntrID != 0) return Info.WriteMem; return isa(Inst); } bool isAtomic() const { if (IntrID != 0) return Info.Ordering != AtomicOrdering::NotAtomic; return Inst->isAtomic(); } bool isUnordered() const { if (IntrID != 0) return Info.isUnordered(); if (LoadInst *LI = dyn_cast(Inst)) { return LI->isUnordered(); } else if (StoreInst *SI = dyn_cast(Inst)) { return SI->isUnordered(); } // Conservative answer return !Inst->isAtomic(); } bool isVolatile() const { if (IntrID != 0) return Info.IsVolatile; if (LoadInst *LI = dyn_cast(Inst)) { return LI->isVolatile(); } else if (StoreInst *SI = dyn_cast(Inst)) { return SI->isVolatile(); } // Conservative answer return true; } bool isInvariantLoad() const { if (auto *LI = dyn_cast(Inst)) return LI->hasMetadata(LLVMContext::MD_invariant_load); return false; } bool isValid() const { return getPointerOperand() != nullptr; } // For regular (non-intrinsic) loads/stores, this is set to -1. For // intrinsic loads/stores, the id is retrieved from the corresponding // field in the MemIntrinsicInfo structure. That field contains // non-negative values only. int getMatchingId() const { if (IntrID != 0) return Info.MatchingId; return -1; } Value *getPointerOperand() const { if (IntrID != 0) return Info.PtrVal; return getLoadStorePointerOperand(Inst); } bool mayReadFromMemory() const { if (IntrID != 0) return Info.ReadMem; return Inst->mayReadFromMemory(); } bool mayWriteToMemory() const { if (IntrID != 0) return Info.WriteMem; return Inst->mayWriteToMemory(); } private: Intrinsic::ID IntrID = 0; MemIntrinsicInfo Info; Instruction *Inst; }; // This function is to prevent accidentally passing a non-target // intrinsic ID to TargetTransformInfo. static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { switch (ID) { case Intrinsic::masked_load: case Intrinsic::masked_store: return true; } return false; } static bool isHandledNonTargetIntrinsic(const Value *V) { if (auto *II = dyn_cast(V)) return isHandledNonTargetIntrinsic(II->getIntrinsicID()); return false; } bool processNode(DomTreeNode *Node); bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, const BasicBlock *BB, const BasicBlock *Pred); Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, unsigned CurrentGeneration); bool overridingStores(const ParseMemoryInst &Earlier, const ParseMemoryInst &Later); Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { if (auto *LI = dyn_cast(Inst)) return LI; if (auto *SI = dyn_cast(Inst)) return SI->getValueOperand(); assert(isa(Inst) && "Instruction not supported"); auto *II = cast(Inst); if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); } Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, Type *ExpectedType) const { switch (II->getIntrinsicID()) { case Intrinsic::masked_load: return II; case Intrinsic::masked_store: return II->getOperand(0); } return nullptr; } /// Return true if the instruction is known to only operate on memory /// provably invariant in the given "generation". bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, Instruction *EarlierInst, Instruction *LaterInst); bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, const IntrinsicInst *Later) { auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { // Is Mask0 a submask of Mask1? if (Mask0 == Mask1) return true; if (isa(Mask0) || isa(Mask1)) return false; auto *Vec0 = dyn_cast(Mask0); auto *Vec1 = dyn_cast(Mask1); if (!Vec0 || !Vec1) return false; assert(Vec0->getType() == Vec1->getType() && "Masks should have the same type"); for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { Constant *Elem0 = Vec0->getOperand(i); Constant *Elem1 = Vec1->getOperand(i); auto *Int0 = dyn_cast(Elem0); if (Int0 && Int0->isZero()) continue; auto *Int1 = dyn_cast(Elem1); if (Int1 && !Int1->isZero()) continue; if (isa(Elem0) || isa(Elem1)) return false; if (Elem0 == Elem1) continue; return false; } return true; }; auto PtrOp = [](const IntrinsicInst *II) { if (II->getIntrinsicID() == Intrinsic::masked_load) return II->getOperand(0); if (II->getIntrinsicID() == Intrinsic::masked_store) return II->getOperand(1); llvm_unreachable("Unexpected IntrinsicInst"); }; auto MaskOp = [](const IntrinsicInst *II) { if (II->getIntrinsicID() == Intrinsic::masked_load) return II->getOperand(2); if (II->getIntrinsicID() == Intrinsic::masked_store) return II->getOperand(3); llvm_unreachable("Unexpected IntrinsicInst"); }; auto ThruOp = [](const IntrinsicInst *II) { if (II->getIntrinsicID() == Intrinsic::masked_load) return II->getOperand(3); llvm_unreachable("Unexpected IntrinsicInst"); }; if (PtrOp(Earlier) != PtrOp(Later)) return false; Intrinsic::ID IDE = Earlier->getIntrinsicID(); Intrinsic::ID IDL = Later->getIntrinsicID(); // We could really use specific intrinsic classes for masked loads // and stores in IntrinsicInst.h. if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { // Trying to replace later masked load with the earlier one. // Check that the pointers are the same, and // - masks and pass-throughs are the same, or // - replacee's pass-through is "undef" and replacer's mask is a // super-set of the replacee's mask. if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) return true; if (!isa(ThruOp(Later))) return false; return IsSubmask(MaskOp(Later), MaskOp(Earlier)); } if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { // Trying to replace a load of a stored value with the store's value. // Check that the pointers are the same, and // - load's mask is a subset of store's mask, and // - load's pass-through is "undef". if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) return false; return isa(ThruOp(Later)); } if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { // Trying to remove a store of the loaded value. // Check that the pointers are the same, and // - store's mask is a subset of the load's mask. return IsSubmask(MaskOp(Later), MaskOp(Earlier)); } if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { // Trying to remove a dead store (earlier). // Check that the pointers are the same, // - the to-be-removed store's mask is a subset of the other store's // mask. return IsSubmask(MaskOp(Earlier), MaskOp(Later)); } return false; } void removeMSSA(Instruction &Inst) { if (!MSSA) return; if (VerifyMemorySSA) MSSA->verifyMemorySSA(); // Removing a store here can leave MemorySSA in an unoptimized state by // creating MemoryPhis that have identical arguments and by creating // MemoryUses whose defining access is not an actual clobber. The phi case // is handled by MemorySSA when passing OptimizePhis = true to // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated // by MemorySSA's getClobberingMemoryAccess. MSSAUpdater->removeMemoryAccess(&Inst, true); } }; } // end anonymous namespace /// Determine if the memory referenced by LaterInst is from the same heap /// version as EarlierInst. /// This is currently called in two scenarios: /// /// load p /// ... /// load p /// /// and /// /// x = load p /// ... /// store x, p /// /// in both cases we want to verify that there are no possible writes to the /// memory referenced by p between the earlier and later instruction. bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, Instruction *EarlierInst, Instruction *LaterInst) { // Check the simple memory generation tracking first. if (EarlierGeneration == LaterGeneration) return true; if (!MSSA) return false; // If MemorySSA has determined that one of EarlierInst or LaterInst does not // read/write memory, then we can safely return true here. // FIXME: We could be more aggressive when checking doesNotAccessMemory(), // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass // by also checking the MemorySSA MemoryAccess on the instruction. Initial // experiments suggest this isn't worthwhile, at least for C/C++ code compiled // with the default optimization pipeline. auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); if (!EarlierMA) return true; auto *LaterMA = MSSA->getMemoryAccess(LaterInst); if (!LaterMA) return true; // Since we know LaterDef dominates LaterInst and EarlierInst dominates // LaterInst, if LaterDef dominates EarlierInst then it can't occur between // EarlierInst and LaterInst and neither can any other write that potentially // clobbers LaterInst. MemoryAccess *LaterDef; if (ClobberCounter < EarlyCSEMssaOptCap) { LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); ClobberCounter++; } else LaterDef = LaterMA->getDefiningAccess(); return MSSA->dominates(LaterDef, EarlierMA); } bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { // A location loaded from with an invariant_load is assumed to *never* change // within the visible scope of the compilation. if (auto *LI = dyn_cast(I)) if (LI->hasMetadata(LLVMContext::MD_invariant_load)) return true; auto MemLocOpt = MemoryLocation::getOrNone(I); if (!MemLocOpt) // "target" intrinsic forms of loads aren't currently known to // MemoryLocation::get. TODO return false; MemoryLocation MemLoc = *MemLocOpt; if (!AvailableInvariants.count(MemLoc)) return false; // Is the generation at which this became invariant older than the // current one? return AvailableInvariants.lookup(MemLoc) <= GenAt; } bool EarlyCSE::handleBranchCondition(Instruction *CondInst, const BranchInst *BI, const BasicBlock *BB, const BasicBlock *Pred) { assert(BI->isConditional() && "Should be a conditional branch!"); assert(BI->getCondition() == CondInst && "Wrong condition?"); assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); auto *TorF = (BI->getSuccessor(0) == BB) ? ConstantInt::getTrue(BB->getContext()) : ConstantInt::getFalse(BB->getContext()); auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, Value *&RHS) { if (Opcode == Instruction::And && match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) return true; else if (Opcode == Instruction::Or && match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) return true; return false; }; // If the condition is AND operation, we can propagate its operands into the // true branch. If it is OR operation, we can propagate them into the false // branch. unsigned PropagateOpcode = (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; bool MadeChanges = false; SmallVector WorkList; SmallPtrSet Visited; WorkList.push_back(CondInst); while (!WorkList.empty()) { Instruction *Curr = WorkList.pop_back_val(); AvailableValues.insert(Curr, TorF); LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" << Curr->getName() << "' as " << *TorF << " in " << BB->getName() << "\n"); if (!DebugCounter::shouldExecute(CSECounter)) { LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); } else { // Replace all dominated uses with the known value. if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, BasicBlockEdge(Pred, BB))) { NumCSECVP += Count; MadeChanges = true; } } Value *LHS, *RHS; if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) for (auto &Op : { LHS, RHS }) if (Instruction *OPI = dyn_cast(Op)) if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) WorkList.push_back(OPI); } return MadeChanges; } Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, unsigned CurrentGeneration) { if (InVal.DefInst == nullptr) return nullptr; if (InVal.MatchingId != MemInst.getMatchingId()) return nullptr; // We don't yet handle removing loads with ordering of any kind. if (MemInst.isVolatile() || !MemInst.isUnordered()) return nullptr; // We can't replace an atomic load with one which isn't also atomic. if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) return nullptr; // The value V returned from this function is used differently depending // on whether MemInst is a load or a store. If it's a load, we will replace // MemInst with V, if it's a store, we will check if V is the same as the // available value. bool MemInstMatching = !MemInst.isLoad(); Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); // For stores check the result values before checking memory generation // (otherwise isSameMemGeneration may crash). Value *Result = MemInst.isStore() ? getOrCreateResult(Matching, Other->getType()) : nullptr; if (MemInst.isStore() && InVal.DefInst != Result) return nullptr; // Deal with non-target memory intrinsics. bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); bool OtherNTI = isHandledNonTargetIntrinsic(Other); if (OtherNTI != MatchingNTI) return nullptr; if (OtherNTI && MatchingNTI) { if (!isNonTargetIntrinsicMatch(cast(InVal.DefInst), cast(MemInst.get()))) return nullptr; } if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, MemInst.get())) return nullptr; if (!Result) Result = getOrCreateResult(Matching, Other->getType()); return Result; } bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, const ParseMemoryInst &Later) { // Can we remove Earlier store because of Later store? assert(Earlier.isUnordered() && !Earlier.isVolatile() && "Violated invariant"); if (Earlier.getPointerOperand() != Later.getPointerOperand()) return false; if (Earlier.getMatchingId() != Later.getMatchingId()) return false; // At the moment, we don't remove ordered stores, but do remove // unordered atomic stores. There's no special requirement (for // unordered atomics) about removing atomic stores only in favor of // other atomic stores since we were going to execute the non-atomic // one anyway and the atomic one might never have become visible. if (!Earlier.isUnordered() || !Later.isUnordered()) return false; // Deal with non-target memory intrinsics. bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); bool LNTI = isHandledNonTargetIntrinsic(Later.get()); if (ENTI && LNTI) return isNonTargetIntrinsicMatch(cast(Earlier.get()), cast(Later.get())); // Because of the check above, at least one of them is false. // For now disallow matching intrinsics with non-intrinsics, // so assume that the stores match if neither is an intrinsic. return ENTI == LNTI; } bool EarlyCSE::processNode(DomTreeNode *Node) { bool Changed = false; BasicBlock *BB = Node->getBlock(); // If this block has a single predecessor, then the predecessor is the parent // of the domtree node and all of the live out memory values are still current // in this block. If this block has multiple predecessors, then they could // have invalidated the live-out memory values of our parent value. For now, // just be conservative and invalidate memory if this block has multiple // predecessors. if (!BB->getSinglePredecessor()) ++CurrentGeneration; // If this node has a single predecessor which ends in a conditional branch, // we can infer the value of the branch condition given that we took this // path. We need the single predecessor to ensure there's not another path // which reaches this block where the condition might hold a different // value. Since we're adding this to the scoped hash table (like any other // def), it will have been popped if we encounter a future merge block. if (BasicBlock *Pred = BB->getSinglePredecessor()) { auto *BI = dyn_cast(Pred->getTerminator()); if (BI && BI->isConditional()) { auto *CondInst = dyn_cast(BI->getCondition()); if (CondInst && SimpleValue::canHandle(CondInst)) Changed |= handleBranchCondition(CondInst, BI, BB, Pred); } } /// LastStore - Keep track of the last non-volatile store that we saw... for /// as long as there in no instruction that reads memory. If we see a store /// to the same location, we delete the dead store. This zaps trivial dead /// stores which can occur in bitfield code among other things. Instruction *LastStore = nullptr; // See if any instructions in the block can be eliminated. If so, do it. If // not, add them to AvailableValues. for (Instruction &Inst : make_early_inc_range(BB->getInstList())) { // Dead instructions should just be removed. if (isInstructionTriviallyDead(&Inst, &TLI)) { LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); if (!DebugCounter::shouldExecute(CSECounter)) { LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); continue; } salvageKnowledge(&Inst, &AC); salvageDebugInfo(Inst); removeMSSA(Inst); Inst.eraseFromParent(); Changed = true; ++NumSimplify; continue; } // Skip assume intrinsics, they don't really have side effects (although // they're marked as such to ensure preservation of control dependencies), // and this pass will not bother with its removal. However, we should mark // its condition as true for all dominated blocks. if (auto *Assume = dyn_cast(&Inst)) { auto *CondI = dyn_cast(Assume->getArgOperand(0)); if (CondI && SimpleValue::canHandle(CondI)) { LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst << '\n'); AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); } else LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); continue; } // Likewise, noalias intrinsics don't actually write. if (match(&Inst, m_Intrinsic())) { LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst << '\n'); continue; } // Skip sideeffect intrinsics, for the same reason as assume intrinsics. if (match(&Inst, m_Intrinsic())) { LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); continue; } // We can skip all invariant.start intrinsics since they only read memory, // and we can forward values across it. For invariant starts without // invariant ends, we can use the fact that the invariantness never ends to // start a scope in the current generaton which is true for all future // generations. Also, we dont need to consume the last store since the // semantics of invariant.start allow us to perform DSE of the last // store, if there was a store following invariant.start. Consider: // // store 30, i8* p // invariant.start(p) // store 40, i8* p // We can DSE the store to 30, since the store 40 to invariant location p // causes undefined behaviour. if (match(&Inst, m_Intrinsic())) { // If there are any uses, the scope might end. if (!Inst.use_empty()) continue; MemoryLocation MemLoc = MemoryLocation::getForArgument(&cast(Inst), 1, TLI); // Don't start a scope if we already have a better one pushed if (!AvailableInvariants.count(MemLoc)) AvailableInvariants.insert(MemLoc, CurrentGeneration); continue; } if (isGuard(&Inst)) { if (auto *CondI = dyn_cast(cast(Inst).getArgOperand(0))) { if (SimpleValue::canHandle(CondI)) { // Do we already know the actual value of this condition? if (auto *KnownCond = AvailableValues.lookup(CondI)) { // Is the condition known to be true? if (isa(KnownCond) && cast(KnownCond)->isOne()) { LLVM_DEBUG(dbgs() << "EarlyCSE removing guard: " << Inst << '\n'); salvageKnowledge(&Inst, &AC); removeMSSA(Inst); Inst.eraseFromParent(); Changed = true; continue; } else // Use the known value if it wasn't true. cast(Inst).setArgOperand(0, KnownCond); } // The condition we're on guarding here is true for all dominated // locations. AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); } } // Guard intrinsics read all memory, but don't write any memory. // Accordingly, don't update the generation but consume the last store (to // avoid an incorrect DSE). LastStore = nullptr; continue; } // If the instruction can be simplified (e.g. X+0 = X) then replace it with // its simpler value. if (Value *V = SimplifyInstruction(&Inst, SQ)) { LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V << '\n'); if (!DebugCounter::shouldExecute(CSECounter)) { LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); } else { bool Killed = false; if (!Inst.use_empty()) { Inst.replaceAllUsesWith(V); Changed = true; } if (isInstructionTriviallyDead(&Inst, &TLI)) { salvageKnowledge(&Inst, &AC); removeMSSA(Inst); Inst.eraseFromParent(); Changed = true; Killed = true; } if (Changed) ++NumSimplify; if (Killed) continue; } } // If this is a simple instruction that we can value number, process it. if (SimpleValue::canHandle(&Inst)) { // See if the instruction has an available value. If so, use it. if (Value *V = AvailableValues.lookup(&Inst)) { LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V << '\n'); if (!DebugCounter::shouldExecute(CSECounter)) { LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); continue; } if (auto *I = dyn_cast(V)) I->andIRFlags(&Inst); Inst.replaceAllUsesWith(V); salvageKnowledge(&Inst, &AC); removeMSSA(Inst); Inst.eraseFromParent(); Changed = true; ++NumCSE; continue; } // Otherwise, just remember that this value is available. AvailableValues.insert(&Inst, &Inst); continue; } ParseMemoryInst MemInst(&Inst, TTI); // If this is a non-volatile load, process it. if (MemInst.isValid() && MemInst.isLoad()) { // (conservatively) we can't peak past the ordering implied by this // operation, but we can add this load to our set of available values if (MemInst.isVolatile() || !MemInst.isUnordered()) { LastStore = nullptr; ++CurrentGeneration; } if (MemInst.isInvariantLoad()) { // If we pass an invariant load, we know that memory location is // indefinitely constant from the moment of first dereferenceability. // We conservatively treat the invariant_load as that moment. If we // pass a invariant load after already establishing a scope, don't // restart it since we want to preserve the earliest point seen. auto MemLoc = MemoryLocation::get(&Inst); if (!AvailableInvariants.count(MemLoc)) AvailableInvariants.insert(MemLoc, CurrentGeneration); } // If we have an available version of this load, and if it is the right // generation or the load is known to be from an invariant location, // replace this instruction. // // If either the dominating load or the current load are invariant, then // we can assume the current load loads the same value as the dominating // load. LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst << " to: " << *InVal.DefInst << '\n'); if (!DebugCounter::shouldExecute(CSECounter)) { LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); continue; } if (!Inst.use_empty()) Inst.replaceAllUsesWith(Op); salvageKnowledge(&Inst, &AC); removeMSSA(Inst); Inst.eraseFromParent(); Changed = true; ++NumCSELoad; continue; } // Otherwise, remember that we have this instruction. AvailableLoads.insert(MemInst.getPointerOperand(), LoadValue(&Inst, CurrentGeneration, MemInst.getMatchingId(), MemInst.isAtomic())); LastStore = nullptr; continue; } // If this instruction may read from memory or throw (and potentially read // from memory in the exception handler), forget LastStore. Load/store // intrinsics will indicate both a read and a write to memory. The target // may override this (e.g. so that a store intrinsic does not read from // memory, and thus will be treated the same as a regular store for // commoning purposes). if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && !(MemInst.isValid() && !MemInst.mayReadFromMemory())) LastStore = nullptr; // If this is a read-only call, process it. if (CallValue::canHandle(&Inst)) { // If we have an available version of this call, and if it is the right // generation, replace this instruction. std::pair InVal = AvailableCalls.lookup(&Inst); if (InVal.first != nullptr && isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, &Inst)) { LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst << " to: " << *InVal.first << '\n'); if (!DebugCounter::shouldExecute(CSECounter)) { LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); continue; } if (!Inst.use_empty()) Inst.replaceAllUsesWith(InVal.first); salvageKnowledge(&Inst, &AC); removeMSSA(Inst); Inst.eraseFromParent(); Changed = true; ++NumCSECall; continue; } // Otherwise, remember that we have this instruction. AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); continue; } // A release fence requires that all stores complete before it, but does // not prevent the reordering of following loads 'before' the fence. As a // result, we don't need to consider it as writing to memory and don't need // to advance the generation. We do need to prevent DSE across the fence, // but that's handled above. if (auto *FI = dyn_cast(&Inst)) if (FI->getOrdering() == AtomicOrdering::Release) { assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); continue; } // write back DSE - If we write back the same value we just loaded from // the same location and haven't passed any intervening writes or ordering // operations, we can remove the write. The primary benefit is in allowing // the available load table to remain valid and value forward past where // the store originally was. if (MemInst.isValid() && MemInst.isStore()) { LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); if (InVal.DefInst && InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { // It is okay to have a LastStore to a different pointer here if MemorySSA // tells us that the load and store are from the same memory generation. // In that case, LastStore should keep its present value since we're // removing the current store. assert((!LastStore || ParseMemoryInst(LastStore, TTI).getPointerOperand() == MemInst.getPointerOperand() || MSSA) && "can't have an intervening store if not using MemorySSA!"); LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); if (!DebugCounter::shouldExecute(CSECounter)) { LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); continue; } salvageKnowledge(&Inst, &AC); removeMSSA(Inst); Inst.eraseFromParent(); Changed = true; ++NumDSE; // We can avoid incrementing the generation count since we were able // to eliminate this store. continue; } } // Okay, this isn't something we can CSE at all. Check to see if it is // something that could modify memory. If so, our available memory values // cannot be used so bump the generation count. if (Inst.mayWriteToMemory()) { ++CurrentGeneration; if (MemInst.isValid() && MemInst.isStore()) { // We do a trivial form of DSE if there are two stores to the same // location with no intervening loads. Delete the earlier store. if (LastStore) { if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: " << Inst << '\n'); if (!DebugCounter::shouldExecute(CSECounter)) { LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); } else { salvageKnowledge(&Inst, &AC); removeMSSA(*LastStore); LastStore->eraseFromParent(); Changed = true; ++NumDSE; LastStore = nullptr; } } // fallthrough - we can exploit information about this store } // Okay, we just invalidated anything we knew about loaded values. Try // to salvage *something* by remembering that the stored value is a live // version of the pointer. It is safe to forward from volatile stores // to non-volatile loads, so we don't have to check for volatility of // the store. AvailableLoads.insert(MemInst.getPointerOperand(), LoadValue(&Inst, CurrentGeneration, MemInst.getMatchingId(), MemInst.isAtomic())); // Remember that this was the last unordered store we saw for DSE. We // don't yet handle DSE on ordered or volatile stores since we don't // have a good way to model the ordering requirement for following // passes once the store is removed. We could insert a fence, but // since fences are slightly stronger than stores in their ordering, // it's not clear this is a profitable transform. Another option would // be to merge the ordering with that of the post dominating store. if (MemInst.isUnordered() && !MemInst.isVolatile()) LastStore = &Inst; else LastStore = nullptr; } } } return Changed; } bool EarlyCSE::run() { // Note, deque is being used here because there is significant performance // gains over vector when the container becomes very large due to the // specific access patterns. For more information see the mailing list // discussion on this: // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html std::deque nodesToProcess; bool Changed = false; // Process the root node. nodesToProcess.push_back(new StackNode( AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, CurrentGeneration, DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); // Process the stack. while (!nodesToProcess.empty()) { // Grab the first item off the stack. Set the current generation, remove // the node from the stack, and process it. StackNode *NodeToProcess = nodesToProcess.back(); // Initialize class members. CurrentGeneration = NodeToProcess->currentGeneration(); // Check if the node needs to be processed. if (!NodeToProcess->isProcessed()) { // Process the node. Changed |= processNode(NodeToProcess->node()); NodeToProcess->childGeneration(CurrentGeneration); NodeToProcess->process(); } else if (NodeToProcess->childIter() != NodeToProcess->end()) { // Push the next child onto the stack. DomTreeNode *child = NodeToProcess->nextChild(); nodesToProcess.push_back( new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, NodeToProcess->childGeneration(), child, child->begin(), child->end())); } else { // It has been processed, and there are no more children to process, // so delete it and pop it off the stack. delete NodeToProcess; nodesToProcess.pop_back(); } } // while (!nodes...) return Changed; } PreservedAnalyses EarlyCSEPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &TTI = AM.getResult(F); auto &DT = AM.getResult(F); auto &AC = AM.getResult(F); auto *MSSA = UseMemorySSA ? &AM.getResult(F).getMSSA() : nullptr; EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); if (!CSE.run()) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); if (UseMemorySSA) PA.preserve(); return PA; } namespace { /// A simple and fast domtree-based CSE pass. /// /// This pass does a simple depth-first walk over the dominator tree, /// eliminating trivially redundant instructions and using instsimplify to /// canonicalize things as it goes. It is intended to be fast and catch obvious /// cases so that instcombine and other passes are more effective. It is /// expected that a later pass of GVN will catch the interesting/hard cases. template class EarlyCSELegacyCommonPass : public FunctionPass { public: static char ID; EarlyCSELegacyCommonPass() : FunctionPass(ID) { if (UseMemorySSA) initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); else initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &TLI = getAnalysis().getTLI(F); auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); auto &AC = getAnalysis().getAssumptionCache(F); auto *MSSA = UseMemorySSA ? &getAnalysis().getMSSA() : nullptr; EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); return CSE.run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); if (UseMemorySSA) { AU.addRequired(); AU.addRequired(); AU.addPreserved(); } AU.addPreserved(); AU.addPreserved(); AU.setPreservesCFG(); } }; } // end anonymous namespace using EarlyCSELegacyPass = EarlyCSELegacyCommonPass; template<> char EarlyCSELegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) using EarlyCSEMemSSALegacyPass = EarlyCSELegacyCommonPass; template<> char EarlyCSEMemSSALegacyPass::ID = 0; FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { if (UseMemorySSA) return new EarlyCSEMemSSALegacyPass(); else return new EarlyCSELegacyPass(); } INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", "Early CSE w/ MemorySSA", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", "Early CSE w/ MemorySSA", false, false)