//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass does the inverse transformation of what LICM does. // It traverses all of the instructions in the loop's preheader and sinks // them to the loop body where frequency is lower than the loop's preheader. // This pass is a reverse-transformation of LICM. It differs from the Sink // pass in the following ways: // // * It only handles sinking of instructions from the loop's preheader to the // loop's body // * It uses alias set tracker to get more accurate alias info // * It uses block frequency info to find the optimal sinking locations // // Overall algorithm: // // For I in Preheader: // InsertBBs = BBs that uses I // For BB in sorted(LoopBBs): // DomBBs = BBs in InsertBBs that are dominated by BB // if freq(DomBBs) > freq(BB) // InsertBBs = UseBBs - DomBBs + BB // For BB in InsertBBs: // Insert I at BB's beginning // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/LoopSink.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loopsink" STATISTIC(NumLoopSunk, "Number of instructions sunk into loop"); STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop"); static cl::opt SinkFrequencyPercentThreshold( "sink-freq-percent-threshold", cl::Hidden, cl::init(90), cl::desc("Do not sink instructions that require cloning unless they " "execute less than this percent of the time.")); static cl::opt MaxNumberOfUseBBsForSinking( "max-uses-for-sinking", cl::Hidden, cl::init(30), cl::desc("Do not sink instructions that have too many uses.")); static cl::opt EnableMSSAInLoopSink( "enable-mssa-in-loop-sink", cl::Hidden, cl::init(true), cl::desc("Enable MemorySSA for LoopSink in new pass manager")); static cl::opt EnableMSSAInLegacyLoopSink( "enable-mssa-in-legacy-loop-sink", cl::Hidden, cl::init(false), cl::desc("Enable MemorySSA for LoopSink in legacy pass manager")); /// Return adjusted total frequency of \p BBs. /// /// * If there is only one BB, sinking instruction will not introduce code /// size increase. Thus there is no need to adjust the frequency. /// * If there are more than one BB, sinking would lead to code size increase. /// In this case, we add some "tax" to the total frequency to make it harder /// to sink. E.g. /// Freq(Preheader) = 100 /// Freq(BBs) = sum(50, 49) = 99 /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to /// BBs as the difference is too small to justify the code size increase. /// To model this, The adjusted Freq(BBs) will be: /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold% static BlockFrequency adjustedSumFreq(SmallPtrSetImpl &BBs, BlockFrequencyInfo &BFI) { BlockFrequency T = 0; for (BasicBlock *B : BBs) T += BFI.getBlockFreq(B); if (BBs.size() > 1) T /= BranchProbability(SinkFrequencyPercentThreshold, 100); return T; } /// Return a set of basic blocks to insert sinked instructions. /// /// The returned set of basic blocks (BBsToSinkInto) should satisfy: /// /// * Inside the loop \p L /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto /// that domintates the UseBB /// * Has minimum total frequency that is no greater than preheader frequency /// /// The purpose of the function is to find the optimal sinking points to /// minimize execution cost, which is defined as "sum of frequency of /// BBsToSinkInto". /// As a result, the returned BBsToSinkInto needs to have minimum total /// frequency. /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader /// frequency, the optimal solution is not sinking (return empty set). /// /// \p ColdLoopBBs is used to help find the optimal sinking locations. /// It stores a list of BBs that is: /// /// * Inside the loop \p L /// * Has a frequency no larger than the loop's preheader /// * Sorted by BB frequency /// /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()). /// To avoid expensive computation, we cap the maximum UseBBs.size() in its /// caller. static SmallPtrSet findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl &UseBBs, const SmallVectorImpl &ColdLoopBBs, DominatorTree &DT, BlockFrequencyInfo &BFI) { SmallPtrSet BBsToSinkInto; if (UseBBs.size() == 0) return BBsToSinkInto; BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end()); SmallPtrSet BBsDominatedByColdestBB; // For every iteration: // * Pick the ColdestBB from ColdLoopBBs // * Find the set BBsDominatedByColdestBB that satisfy: // - BBsDominatedByColdestBB is a subset of BBsToSinkInto // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to // BBsToSinkInto for (BasicBlock *ColdestBB : ColdLoopBBs) { BBsDominatedByColdestBB.clear(); for (BasicBlock *SinkedBB : BBsToSinkInto) if (DT.dominates(ColdestBB, SinkedBB)) BBsDominatedByColdestBB.insert(SinkedBB); if (BBsDominatedByColdestBB.size() == 0) continue; if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) > BFI.getBlockFreq(ColdestBB)) { for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) { BBsToSinkInto.erase(DominatedBB); } BBsToSinkInto.insert(ColdestBB); } } // Can't sink into blocks that have no valid insertion point. for (BasicBlock *BB : BBsToSinkInto) { if (BB->getFirstInsertionPt() == BB->end()) { BBsToSinkInto.clear(); break; } } // If the total frequency of BBsToSinkInto is larger than preheader frequency, // do not sink. if (adjustedSumFreq(BBsToSinkInto, BFI) > BFI.getBlockFreq(L.getLoopPreheader())) BBsToSinkInto.clear(); return BBsToSinkInto; } // Sinks \p I from the loop \p L's preheader to its uses. Returns true if // sinking is successful. // \p LoopBlockNumber is used to sort the insertion blocks to ensure // determinism. static bool sinkInstruction( Loop &L, Instruction &I, const SmallVectorImpl &ColdLoopBBs, const SmallDenseMap &LoopBlockNumber, LoopInfo &LI, DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) { // Compute the set of blocks in loop L which contain a use of I. SmallPtrSet BBs; for (auto &U : I.uses()) { Instruction *UI = cast(U.getUser()); // We cannot sink I to PHI-uses. if (isa(UI)) return false; // We cannot sink I if it has uses outside of the loop. if (!L.contains(LI.getLoopFor(UI->getParent()))) return false; BBs.insert(UI->getParent()); } // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max // BBs.size() to avoid expensive computation. // FIXME: Handle code size growth for min_size and opt_size. if (BBs.size() > MaxNumberOfUseBBsForSinking) return false; // Find the set of BBs that we should insert a copy of I. SmallPtrSet BBsToSinkInto = findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI); if (BBsToSinkInto.empty()) return false; // Return if any of the candidate blocks to sink into is non-cold. if (BBsToSinkInto.size() > 1 && !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber)) return false; // Copy the final BBs into a vector and sort them using the total ordering // of the loop block numbers as iterating the set doesn't give a useful // order. No need to stable sort as the block numbers are a total ordering. SmallVector SortedBBsToSinkInto; llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto); llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) { return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second; }); BasicBlock *MoveBB = *SortedBBsToSinkInto.begin(); // FIXME: Optimize the efficiency for cloned value replacement. The current // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()). for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) { assert(LoopBlockNumber.find(N)->second > LoopBlockNumber.find(MoveBB)->second && "BBs not sorted!"); // Clone I and replace its uses. Instruction *IC = I.clone(); IC->setName(I.getName()); IC->insertBefore(&*N->getFirstInsertionPt()); if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { // Create a new MemoryAccess and let MemorySSA set its defining access. MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning); if (NewMemAcc) { if (auto *MemDef = dyn_cast(NewMemAcc)) MSSAU->insertDef(MemDef, /*RenameUses=*/true); else { auto *MemUse = cast(NewMemAcc); MSSAU->insertUse(MemUse, /*RenameUses=*/true); } } } // Replaces uses of I with IC in N I.replaceUsesWithIf(IC, [N](Use &U) { return cast(U.getUser())->getParent() == N; }); // Replaces uses of I with IC in blocks dominated by N replaceDominatedUsesWith(&I, IC, DT, N); LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName() << '\n'); NumLoopSunkCloned++; } LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n'); NumLoopSunk++; I.moveBefore(&*MoveBB->getFirstInsertionPt()); if (MSSAU) if (MemoryUseOrDef *OldMemAcc = cast_or_null( MSSAU->getMemorySSA()->getMemoryAccess(&I))) MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning); return true; } /// Sinks instructions from loop's preheader to the loop body if the /// sum frequency of inserted copy is smaller than preheader's frequency. static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI, DominatorTree &DT, BlockFrequencyInfo &BFI, ScalarEvolution *SE, AliasSetTracker *CurAST, MemorySSA *MSSA) { BasicBlock *Preheader = L.getLoopPreheader(); assert(Preheader && "Expected loop to have preheader"); assert(Preheader->getParent()->hasProfileData() && "Unexpected call when profile data unavailable."); const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader); // If there are no basic blocks with lower frequency than the preheader then // we can avoid the detailed analysis as we will never find profitable sinking // opportunities. if (all_of(L.blocks(), [&](const BasicBlock *BB) { return BFI.getBlockFreq(BB) > PreheaderFreq; })) return false; std::unique_ptr MSSAU; std::unique_ptr LICMFlags; if (MSSA) { MSSAU = std::make_unique(MSSA); LICMFlags = std::make_unique(/*IsSink=*/true, &L, MSSA); } bool Changed = false; // Sort loop's basic blocks by frequency SmallVector ColdLoopBBs; SmallDenseMap LoopBlockNumber; int i = 0; for (BasicBlock *B : L.blocks()) if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) { ColdLoopBBs.push_back(B); LoopBlockNumber[B] = ++i; } llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) { return BFI.getBlockFreq(A) < BFI.getBlockFreq(B); }); // Traverse preheader's instructions in reverse order becaue if A depends // on B (A appears after B), A needs to be sinked first before B can be // sinked. for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) { Instruction *I = &*II++; // No need to check for instruction's operands are loop invariant. assert(L.hasLoopInvariantOperands(I) && "Insts in a loop's preheader should have loop invariant operands!"); if (!canSinkOrHoistInst(*I, &AA, &DT, &L, CurAST, MSSAU.get(), false, LICMFlags.get())) continue; if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI, MSSAU.get())) Changed = true; } if (Changed && SE) SE->forgetLoopDispositions(&L); return Changed; } static void computeAliasSet(Loop &L, BasicBlock &Preheader, AliasSetTracker &CurAST) { for (BasicBlock *BB : L.blocks()) CurAST.add(*BB); CurAST.add(Preheader); } PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) { LoopInfo &LI = FAM.getResult(F); // Nothing to do if there are no loops. if (LI.empty()) return PreservedAnalyses::all(); AAResults &AA = FAM.getResult(F); DominatorTree &DT = FAM.getResult(F); BlockFrequencyInfo &BFI = FAM.getResult(F); MemorySSA *MSSA = EnableMSSAInLoopSink ? &FAM.getResult(F).getMSSA() : nullptr; // We want to do a postorder walk over the loops. Since loops are a tree this // is equivalent to a reversed preorder walk and preorder is easy to compute // without recursion. Since we reverse the preorder, we will visit siblings // in reverse program order. This isn't expected to matter at all but is more // consistent with sinking algorithms which generally work bottom-up. SmallVector PreorderLoops = LI.getLoopsInPreorder(); bool Changed = false; do { Loop &L = *PreorderLoops.pop_back_val(); BasicBlock *Preheader = L.getLoopPreheader(); if (!Preheader) continue; // Enable LoopSink only when runtime profile is available. // With static profile, the sinking decision may be sub-optimal. if (!Preheader->getParent()->hasProfileData()) continue; std::unique_ptr CurAST; if (!EnableMSSAInLoopSink) { CurAST = std::make_unique(AA); computeAliasSet(L, *Preheader, *CurAST.get()); } // Note that we don't pass SCEV here because it is only used to invalidate // loops in SCEV and we don't preserve (or request) SCEV at all making that // unnecessary. Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, /*ScalarEvolution*/ nullptr, CurAST.get(), MSSA); } while (!PreorderLoops.empty()); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); if (MSSA) { PA.preserve(); if (VerifyMemorySSA) MSSA->verifyMemorySSA(); } return PA; } namespace { struct LegacyLoopSinkPass : public LoopPass { static char ID; LegacyLoopSinkPass() : LoopPass(ID) { initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *L, LPPassManager &LPM) override { if (skipLoop(L)) return false; BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) return false; // Enable LoopSink only when runtime profile is available. // With static profile, the sinking decision may be sub-optimal. if (!Preheader->getParent()->hasProfileData()) return false; AAResults &AA = getAnalysis().getAAResults(); auto *SE = getAnalysisIfAvailable(); std::unique_ptr CurAST; MemorySSA *MSSA = nullptr; if (EnableMSSAInLegacyLoopSink) MSSA = &getAnalysis().getMSSA(); else { CurAST = std::make_unique(AA); computeAliasSet(*L, *Preheader, *CurAST.get()); } bool Changed = sinkLoopInvariantInstructions( *L, AA, getAnalysis().getLoopInfo(), getAnalysis().getDomTree(), getAnalysis().getBFI(), SE ? &SE->getSE() : nullptr, CurAST.get(), MSSA); if (MSSA && VerifyMemorySSA) MSSA->verifyMemorySSA(); return Changed; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); getLoopAnalysisUsage(AU); if (EnableMSSAInLegacyLoopSink) { AU.addRequired(); AU.addPreserved(); } } }; } char LegacyLoopSinkPass::ID = 0; INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false) Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }