//===- VectorUtilsTest.cpp - VectorUtils tests ------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Analysis/VectorUtils.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/KnownBits.h" #include "gtest/gtest.h" using namespace llvm; namespace { class VectorUtilsTest : public testing::Test { protected: void parseAssembly(const char *Assembly) { SMDiagnostic Error; M = parseAssemblyString(Assembly, Error, Context); std::string errMsg; raw_string_ostream os(errMsg); Error.print("", os); // A failure here means that the test itself is buggy. if (!M) report_fatal_error(os.str()); Function *F = M->getFunction("test"); if (F == nullptr) report_fatal_error("Test must have a function named @test"); A = nullptr; for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { if (I->hasName()) { if (I->getName() == "A") A = &*I; } } if (A == nullptr) report_fatal_error("@test must have an instruction %A"); } LLVMContext Context; std::unique_ptr M; Instruction *A; }; struct BasicTest : public testing::Test { LLVMContext Ctx; std::unique_ptr M; Function *F; BasicBlock *BB; IRBuilder IRB; BasicTest() : M(new Module("VectorUtils", Ctx)), F(Function::Create( FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false), Function::ExternalLinkage, "f", M.get())), BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {} }; } // namespace TEST_F(BasicTest, isSplat) { Value *UndefVec = UndefValue::get(FixedVectorType::get(IRB.getInt8Ty(), 4)); EXPECT_TRUE(isSplatValue(UndefVec)); Constant *UndefScalar = UndefValue::get(IRB.getInt8Ty()); EXPECT_FALSE(isSplatValue(UndefScalar)); Constant *ScalarC = IRB.getInt8(42); EXPECT_FALSE(isSplatValue(ScalarC)); Constant *OtherScalarC = IRB.getInt8(-42); Constant *NonSplatC = ConstantVector::get({ScalarC, OtherScalarC}); EXPECT_FALSE(isSplatValue(NonSplatC)); Value *SplatC = IRB.CreateVectorSplat(5, ScalarC); EXPECT_TRUE(isSplatValue(SplatC)); Value *SplatC_SVE = IRB.CreateVectorSplat(ElementCount::getScalable(5), ScalarC); EXPECT_TRUE(isSplatValue(SplatC_SVE)); // FIXME: Constant splat analysis does not allow undef elements. Constant *SplatWithUndefC = ConstantVector::get({ScalarC, UndefScalar}); EXPECT_FALSE(isSplatValue(SplatWithUndefC)); } TEST_F(BasicTest, narrowShuffleMaskElts) { SmallVector ScaledMask; narrowShuffleMaskElts(1, {3,2,0,-2}, ScaledMask); EXPECT_EQ(makeArrayRef(ScaledMask), makeArrayRef({3,2,0,-2})); narrowShuffleMaskElts(4, {3,2,0,-1}, ScaledMask); EXPECT_EQ(makeArrayRef(ScaledMask), makeArrayRef({12,13,14,15,8,9,10,11,0,1,2,3,-1,-1,-1,-1})); } TEST_F(BasicTest, widenShuffleMaskElts) { SmallVector WideMask; SmallVector NarrowMask; // scale == 1 is a copy EXPECT_TRUE(widenShuffleMaskElts(1, {3,2,0,-1}, WideMask)); EXPECT_EQ(makeArrayRef(WideMask), makeArrayRef({3,2,0,-1})); // back to original mask narrowShuffleMaskElts(1, makeArrayRef(WideMask), NarrowMask); EXPECT_EQ(makeArrayRef(NarrowMask), makeArrayRef({3,2,0,-1})); // can't widen non-consecutive 3/2 EXPECT_FALSE(widenShuffleMaskElts(2, {3,2,0,-1}, WideMask)); // can't widen if not evenly divisible EXPECT_FALSE(widenShuffleMaskElts(2, {0,1,2}, WideMask)); // can always widen identity to single element EXPECT_TRUE(widenShuffleMaskElts(3, {0,1,2}, WideMask)); EXPECT_EQ(makeArrayRef(WideMask), makeArrayRef({0})); // back to original mask narrowShuffleMaskElts(3, makeArrayRef(WideMask), NarrowMask); EXPECT_EQ(makeArrayRef(NarrowMask), makeArrayRef({0,1,2})); // groups of 4 must be consecutive/undef EXPECT_TRUE(widenShuffleMaskElts(4, {12,13,14,15,8,9,10,11,0,1,2,3,-1,-1,-1,-1}, WideMask)); EXPECT_EQ(makeArrayRef(WideMask), makeArrayRef({3,2,0,-1})); // back to original mask narrowShuffleMaskElts(4, makeArrayRef(WideMask), NarrowMask); EXPECT_EQ(makeArrayRef(NarrowMask), makeArrayRef({12,13,14,15,8,9,10,11,0,1,2,3,-1,-1,-1,-1})); // groups of 2 must be consecutive/undef EXPECT_FALSE(widenShuffleMaskElts(2, {12,12,14,15,8,9,10,11,0,1,2,3,-1,-1,-1,-1}, WideMask)); // groups of 3 must be consecutive/undef EXPECT_TRUE(widenShuffleMaskElts(3, {6,7,8,0,1,2,-1,-1,-1}, WideMask)); EXPECT_EQ(makeArrayRef(WideMask), makeArrayRef({2,0,-1})); // back to original mask narrowShuffleMaskElts(3, makeArrayRef(WideMask), NarrowMask); EXPECT_EQ(makeArrayRef(NarrowMask), makeArrayRef({6,7,8,0,1,2,-1,-1,-1})); // groups of 3 must be consecutive/undef (partial undefs are not ok) EXPECT_FALSE(widenShuffleMaskElts(3, {-1,7,8,0,-1,2,-1,-1,-1}, WideMask)); // negative indexes must match across a wide element EXPECT_FALSE(widenShuffleMaskElts(2, {-1,-2,-1,-1}, WideMask)); // negative indexes must match across a wide element EXPECT_TRUE(widenShuffleMaskElts(2, {-2,-2,-3,-3}, WideMask)); EXPECT_EQ(makeArrayRef(WideMask), makeArrayRef({-2,-3})); } TEST_F(BasicTest, getSplatIndex) { EXPECT_EQ(getSplatIndex({0,0,0}), 0); EXPECT_EQ(getSplatIndex({1,0,0}), -1); // no splat EXPECT_EQ(getSplatIndex({0,1,1}), -1); // no splat EXPECT_EQ(getSplatIndex({42,42,42}), 42); // array size is independent of splat index EXPECT_EQ(getSplatIndex({42,42,-1}), 42); // ignore negative EXPECT_EQ(getSplatIndex({-1,42,-1}), 42); // ignore negatives EXPECT_EQ(getSplatIndex({-4,42,-42}), 42); // ignore all negatives EXPECT_EQ(getSplatIndex({-4,-1,-42}), -1); // all negative values map to -1 } TEST_F(VectorUtilsTest, isSplatValue_00) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> zeroinitializer\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_00_index0) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> zeroinitializer\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A, 0)); } TEST_F(VectorUtilsTest, isSplatValue_00_index1) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> zeroinitializer\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 1)); } TEST_F(VectorUtilsTest, isSplatValue_11) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_11_index0) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 0)); } TEST_F(VectorUtilsTest, isSplatValue_11_index1) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A, 1)); } TEST_F(VectorUtilsTest, isSplatValue_01) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_01_index0) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 0)); } TEST_F(VectorUtilsTest, isSplatValue_01_index1) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 1)); } // FIXME: Allow undef matching with Constant (mask) splat analysis. TEST_F(VectorUtilsTest, isSplatValue_0u) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A)); } // FIXME: Allow undef matching with Constant (mask) splat analysis. TEST_F(VectorUtilsTest, isSplatValue_0u_index0) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 0)); } TEST_F(VectorUtilsTest, isSplatValue_0u_index1) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %A = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 1)); } TEST_F(VectorUtilsTest, isSplatValue_Binop) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %v0 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %v1 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %A = udiv <2 x i8> %v0, %v1\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_Binop_index0) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %v0 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %v1 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %A = udiv <2 x i8> %v0, %v1\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 0)); } TEST_F(VectorUtilsTest, isSplatValue_Binop_index1) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %v0 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %v1 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %A = udiv <2 x i8> %v0, %v1\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 1)); } TEST_F(VectorUtilsTest, isSplatValue_Binop_ConstantOp0) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %v1 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %A = ashr <2 x i8> , %v1\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_Binop_ConstantOp0_index0) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %v1 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %A = ashr <2 x i8> , %v1\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A, 0)); } TEST_F(VectorUtilsTest, isSplatValue_Binop_ConstantOp0_index1) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %v1 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %A = ashr <2 x i8> , %v1\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A, 1)); } TEST_F(VectorUtilsTest, isSplatValue_Binop_Not_Op0) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %v0 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %v1 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %A = add <2 x i8> %v0, %v1\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_Binop_Not_Op1) { parseAssembly( "define <2 x i8> @test(<2 x i8> %x) {\n" " %v0 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %v1 = shufflevector <2 x i8> %x, <2 x i8> undef, <2 x i32> \n" " %A = shl <2 x i8> %v0, %v1\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_Select) { parseAssembly( "define <2 x i8> @test(<2 x i1> %x, <2 x i8> %y, <2 x i8> %z) {\n" " %v0 = shufflevector <2 x i1> %x, <2 x i1> undef, <2 x i32> \n" " %v1 = shufflevector <2 x i8> %y, <2 x i8> undef, <2 x i32> \n" " %v2 = shufflevector <2 x i8> %z, <2 x i8> undef, <2 x i32> \n" " %A = select <2 x i1> %v0, <2 x i8> %v1, <2 x i8> %v2\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_Select_ConstantOp) { parseAssembly( "define <2 x i8> @test(<2 x i1> %x, <2 x i8> %y, <2 x i8> %z) {\n" " %v0 = shufflevector <2 x i1> %x, <2 x i1> undef, <2 x i32> \n" " %v2 = shufflevector <2 x i8> %z, <2 x i8> undef, <2 x i32> \n" " %A = select <2 x i1> %v0, <2 x i8> , <2 x i8> %v2\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_Select_NotCond) { parseAssembly( "define <2 x i8> @test(<2 x i1> %x, <2 x i8> %y, <2 x i8> %z) {\n" " %v1 = shufflevector <2 x i8> %y, <2 x i8> undef, <2 x i32> \n" " %v2 = shufflevector <2 x i8> %z, <2 x i8> undef, <2 x i32> \n" " %A = select <2 x i1> %x, <2 x i8> %v1, <2 x i8> %v2\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_Select_NotOp1) { parseAssembly( "define <2 x i8> @test(<2 x i1> %x, <2 x i8> %y, <2 x i8> %z) {\n" " %v0 = shufflevector <2 x i1> %x, <2 x i1> undef, <2 x i32> \n" " %v2 = shufflevector <2 x i8> %z, <2 x i8> undef, <2 x i32> \n" " %A = select <2 x i1> %v0, <2 x i8> %y, <2 x i8> %v2\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_Select_NotOp2) { parseAssembly( "define <2 x i8> @test(<2 x i1> %x, <2 x i8> %y, <2 x i8> %z) {\n" " %v0 = shufflevector <2 x i1> %x, <2 x i1> undef, <2 x i32> \n" " %v1 = shufflevector <2 x i8> %y, <2 x i8> undef, <2 x i32> \n" " %A = select <2 x i1> %v0, <2 x i8> %v1, <2 x i8> %z\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_FALSE(isSplatValue(A)); } TEST_F(VectorUtilsTest, isSplatValue_SelectBinop) { parseAssembly( "define <2 x i8> @test(<2 x i1> %x, <2 x i8> %y, <2 x i8> %z) {\n" " %v0 = shufflevector <2 x i1> %x, <2 x i1> undef, <2 x i32> \n" " %v1 = shufflevector <2 x i8> %y, <2 x i8> undef, <2 x i32> \n" " %v2 = shufflevector <2 x i8> %z, <2 x i8> undef, <2 x i32> \n" " %bo = xor <2 x i8> %v1, %v2\n" " %A = select <2 x i1> %v0, <2 x i8> %bo, <2 x i8> %v2\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_TRUE(isSplatValue(A)); } TEST_F(VectorUtilsTest, getSplatValueElt0) { parseAssembly( "define <2 x i8> @test(i8 %x) {\n" " %ins = insertelement <2 x i8> undef, i8 %x, i32 0\n" " %A = shufflevector <2 x i8> %ins, <2 x i8> undef, <2 x i32> zeroinitializer\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_EQ(getSplatValue(A)->getName(), "x"); } TEST_F(VectorUtilsTest, getSplatValueEltMismatch) { parseAssembly( "define <2 x i8> @test(i8 %x) {\n" " %ins = insertelement <2 x i8> undef, i8 %x, i32 1\n" " %A = shufflevector <2 x i8> %ins, <2 x i8> undef, <2 x i32> zeroinitializer\n" " ret <2 x i8> %A\n" "}\n"); EXPECT_EQ(getSplatValue(A), nullptr); } // TODO: This is a splat, but we don't recognize it. TEST_F(VectorUtilsTest, getSplatValueElt1) { parseAssembly( "define <2 x i8> @test(i8 %x) {\n" " %ins = insertelement <2 x i8> undef, i8 %x, i32 1\n" " %A = shufflevector <2 x i8> %ins, <2 x i8> undef, <2 x i32> \n" " ret <2 x i8> %A\n" "}\n"); EXPECT_EQ(getSplatValue(A), nullptr); } //////////////////////////////////////////////////////////////////////////////// // VFShape API tests. //////////////////////////////////////////////////////////////////////////////// class VFShapeAPITest : public testing::Test { protected: void SetUp() override { M = parseAssemblyString(IR, Err, Ctx); // Get the only call instruction in the block, which is the first // instruction. CI = dyn_cast(&*(instructions(M->getFunction("f")).begin())); } const char *IR = "define i32 @f(i32 %a, i64 %b, double %c) {\n" " %1 = call i32 @g(i32 %a, i64 %b, double %c)\n" " ret i32 %1\n" "}\n" "declare i32 @g(i32, i64, double)\n"; LLVMContext Ctx; SMDiagnostic Err; std::unique_ptr M; CallInst *CI; // Dummy shape with no parameters, overwritten by buildShape when invoked. VFShape Shape = {/*VF*/ ElementCount::getFixed(2), /*Parameters*/ {}}; VFShape Expected; SmallVector &ExpectedParams = Expected.Parameters; void buildShape(ElementCount VF, bool HasGlobalPred) { Shape = VFShape::get(*CI, VF, HasGlobalPred); } bool validParams(ArrayRef Parameters) { Shape.Parameters = SmallVector(Parameters.begin(), Parameters.end()); return Shape.hasValidParameterList(); } }; TEST_F(VFShapeAPITest, API_buildVFShape) { buildShape(/*VF*/ ElementCount::getFixed(2), /*HasGlobalPred*/ false); Expected = {/*VF*/ ElementCount::getFixed(2), /*Parameters*/ { {0, VFParamKind::Vector}, {1, VFParamKind::Vector}, {2, VFParamKind::Vector}, }}; EXPECT_EQ(Shape, Expected); buildShape(/*VF*/ ElementCount::getFixed(4), /*HasGlobalPred*/ true); Expected = {/*VF*/ ElementCount::getFixed(4), /*Parameters*/ { {0, VFParamKind::Vector}, {1, VFParamKind::Vector}, {2, VFParamKind::Vector}, {3, VFParamKind::GlobalPredicate}, }}; EXPECT_EQ(Shape, Expected); buildShape(/*VF*/ ElementCount::getScalable(16), /*HasGlobalPred*/ false); Expected = {/*VF*/ ElementCount::getScalable(16), /*Parameters*/ { {0, VFParamKind::Vector}, {1, VFParamKind::Vector}, {2, VFParamKind::Vector}, }}; EXPECT_EQ(Shape, Expected); } TEST_F(VFShapeAPITest, API_getScalarShape) { buildShape(/*VF*/ ElementCount::getFixed(1), /*HasGlobalPred*/ false); EXPECT_EQ(VFShape::getScalarShape(*CI), Shape); } TEST_F(VFShapeAPITest, API_getVectorizedFunction) { VFShape ScalarShape = VFShape::getScalarShape(*CI); EXPECT_EQ(VFDatabase(*CI).getVectorizedFunction(ScalarShape), M->getFunction("g")); buildShape(/*VF*/ ElementCount::getScalable(1), /*HasGlobalPred*/ false); EXPECT_EQ(VFDatabase(*CI).getVectorizedFunction(Shape), nullptr); buildShape(/*VF*/ ElementCount::getFixed(1), /*HasGlobalPred*/ true); EXPECT_EQ(VFDatabase(*CI).getVectorizedFunction(Shape), nullptr); buildShape(/*VF*/ ElementCount::getScalable(1), /*HasGlobalPred*/ true); EXPECT_EQ(VFDatabase(*CI).getVectorizedFunction(Shape), nullptr); } TEST_F(VFShapeAPITest, API_updateVFShape) { buildShape(/*VF*/ ElementCount::getFixed(2), /*HasGlobalPred*/ false); Shape.updateParam({0 /*Pos*/, VFParamKind::OMP_Linear, 1, Align(4)}); Expected = {/*VF*/ ElementCount::getFixed(2), /*Parameters*/ { {0, VFParamKind::OMP_Linear, 1, Align(4)}, {1, VFParamKind::Vector}, {2, VFParamKind::Vector}, }}; EXPECT_EQ(Shape, Expected); // From this point on, we update only the parameters of the VFShape, // so we update only the reference of the expected Parameters. Shape.updateParam({1 /*Pos*/, VFParamKind::OMP_Uniform}); ExpectedParams = { {0, VFParamKind::OMP_Linear, 1, Align(4)}, {1, VFParamKind::OMP_Uniform}, {2, VFParamKind::Vector}, }; EXPECT_EQ(Shape, Expected); Shape.updateParam({2 /*Pos*/, VFParamKind::OMP_LinearRefPos, 1}); ExpectedParams = { {0, VFParamKind::OMP_Linear, 1, Align(4)}, {1, VFParamKind::OMP_Uniform}, {2, VFParamKind::OMP_LinearRefPos, 1}, }; EXPECT_EQ(Shape, Expected); } TEST_F(VFShapeAPITest, API_updateVFShape_GlobalPredicate) { buildShape(/*VF*/ ElementCount::getScalable(2), /*HasGlobalPred*/ true); Shape.updateParam({1 /*Pos*/, VFParamKind::OMP_Uniform}); Expected = {/*VF*/ ElementCount::getScalable(2), /*Parameters*/ {{0, VFParamKind::Vector}, {1, VFParamKind::OMP_Uniform}, {2, VFParamKind::Vector}, {3, VFParamKind::GlobalPredicate}}}; EXPECT_EQ(Shape, Expected); } TEST_F(VFShapeAPITest, Parameters_Valid) { // ParamPos in order. EXPECT_TRUE(validParams({{0, VFParamKind::Vector}})); EXPECT_TRUE( validParams({{0, VFParamKind::Vector}, {1, VFParamKind::Vector}})); EXPECT_TRUE(validParams({{0, VFParamKind::Vector}, {1, VFParamKind::Vector}, {2, VFParamKind::Vector}})); // GlocalPredicate is unique. EXPECT_TRUE(validParams({{0, VFParamKind::Vector}, {1, VFParamKind::Vector}, {2, VFParamKind::Vector}, {3, VFParamKind::GlobalPredicate}})); EXPECT_TRUE(validParams({{0, VFParamKind::Vector}, {1, VFParamKind::GlobalPredicate}, {2, VFParamKind::Vector}})); } TEST_F(VFShapeAPITest, Parameters_ValidOpenMPLinear) { // Valid linear constant step (>0). #define __BUILD_PARAMETERS(Kind, Val) \ { \ { 0, Kind, Val } \ } EXPECT_TRUE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_Linear, 1))); EXPECT_TRUE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearRef, 2))); EXPECT_TRUE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearVal, 4))); EXPECT_TRUE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearUVal, 33))); #undef __BUILD_PARAMETERS // Valid linear runtime step (the step parameter is marked uniform). #define __BUILD_PARAMETERS(Kind) \ { \ {0, VFParamKind::OMP_Uniform}, {1, VFParamKind::Vector}, { 2, Kind, 0 } \ } EXPECT_TRUE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearPos))); EXPECT_TRUE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearRefPos))); EXPECT_TRUE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearValPos))); EXPECT_TRUE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearUValPos))); #undef __BUILD_PARAMETERS } TEST_F(VFShapeAPITest, Parameters_Invalid) { #ifndef NDEBUG // Wrong order is checked by an assertion: make sure that the // assertion is not removed. EXPECT_DEATH(validParams({{1, VFParamKind::Vector}}), "Broken parameter list."); EXPECT_DEATH( validParams({{1, VFParamKind::Vector}, {0, VFParamKind::Vector}}), "Broken parameter list."); #endif // GlobalPredicate is not unique EXPECT_FALSE(validParams({{0, VFParamKind::Vector}, {1, VFParamKind::GlobalPredicate}, {2, VFParamKind::GlobalPredicate}})); EXPECT_FALSE(validParams({{0, VFParamKind::GlobalPredicate}, {1, VFParamKind::Vector}, {2, VFParamKind::GlobalPredicate}})); } TEST_F(VFShapeAPITest, Parameters_InvalidOpenMPLinear) { // Compile time linear steps must be non-zero (compile time invariant). #define __BUILD_PARAMETERS(Kind) \ { \ { 0, Kind, 0 } \ } EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_Linear))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearRef))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearVal))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearUVal))); #undef __BUILD_PARAMETERS // The step of a runtime linear parameter must be marked // as uniform (runtime invariant). #define __BUILD_PARAMETERS(Kind) \ { \ {0, VFParamKind::OMP_Uniform}, {1, VFParamKind::Vector}, { 2, Kind, 1 } \ } EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearRefPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearValPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearUValPos))); #undef __BUILD_PARAMETERS // The linear step parameter can't point at itself. #define __BUILD_PARAMETERS(Kind) \ { \ {0, VFParamKind::Vector}, {1, VFParamKind::Vector}, { 2, Kind, 2 } \ } EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearRefPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearValPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearUValPos))); #undef __BUILD_PARAMETERS // Linear parameter (runtime) is out of range. #define __BUILD_PARAMETERS(Kind) \ { \ {0, VFParamKind::Vector}, {1, VFParamKind::Vector}, { 2, Kind, 3 } \ } EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearRefPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearValPos))); EXPECT_FALSE(validParams(__BUILD_PARAMETERS(VFParamKind::OMP_LinearUValPos))); #undef __BUILD_PARAMETERS }