//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend emits information about intrinsic functions. // //===----------------------------------------------------------------------===// #include "CodeGenIntrinsics.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "TableGenBackends.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/StringMatcher.h" #include "llvm/TableGen/StringToOffsetTable.h" #include "llvm/TableGen/TableGenBackend.h" #include using namespace llvm; cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums"); cl::opt IntrinsicPrefix("intrinsic-prefix", cl::desc("Generate intrinsics with this target prefix"), cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat)); namespace { class IntrinsicEmitter { RecordKeeper &Records; public: IntrinsicEmitter(RecordKeeper &R) : Records(R) {} void run(raw_ostream &OS, bool Enums); void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS); }; } // End anonymous namespace //===----------------------------------------------------------------------===// // IntrinsicEmitter Implementation //===----------------------------------------------------------------------===// void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) { emitSourceFileHeader("Intrinsic Function Source Fragment", OS); CodeGenIntrinsicTable Ints(Records); if (Enums) { // Emit the enum information. EmitEnumInfo(Ints, OS); } else { // Emit the target metadata. EmitTargetInfo(Ints, OS); // Emit the intrinsic ID -> name table. EmitIntrinsicToNameTable(Ints, OS); // Emit the intrinsic ID -> overload table. EmitIntrinsicToOverloadTable(Ints, OS); // Emit the intrinsic declaration generator. EmitGenerator(Ints, OS); // Emit the intrinsic parameter attributes. EmitAttributes(Ints, OS); // Emit code to translate GCC builtins into LLVM intrinsics. EmitIntrinsicToBuiltinMap(Ints, true, OS); // Emit code to translate MS builtins into LLVM intrinsics. EmitIntrinsicToBuiltinMap(Ints, false, OS); } } void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { // Find the TargetSet for which to generate enums. There will be an initial // set with an empty target prefix which will include target independent // intrinsics like dbg.value. const CodeGenIntrinsicTable::TargetSet *Set = nullptr; for (const auto &Target : Ints.Targets) { if (Target.Name == IntrinsicPrefix) { Set = &Target; break; } } if (!Set) { std::vector KnownTargets; for (const auto &Target : Ints.Targets) if (!Target.Name.empty()) KnownTargets.push_back(Target.Name); PrintFatalError("tried to generate intrinsics for unknown target " + IntrinsicPrefix + "\nKnown targets are: " + join(KnownTargets, ", ") + "\n"); } // Generate a complete header for target specific intrinsics. if (!IntrinsicPrefix.empty()) { std::string UpperPrefix = StringRef(IntrinsicPrefix).upper(); OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n"; OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n"; OS << "namespace llvm {\n"; OS << "namespace Intrinsic {\n"; OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n"; } OS << "// Enum values for intrinsics\n"; for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) { OS << " " << Ints[i].EnumName; // Assign a value to the first intrinsic in this target set so that all // intrinsic ids are distinct. if (i == Set->Offset) OS << " = " << (Set->Offset + 1); OS << ", "; if (Ints[i].EnumName.size() < 40) OS.indent(40 - Ints[i].EnumName.size()); OS << " // " << Ints[i].Name << "\n"; } // Emit num_intrinsics into the target neutral enum. if (IntrinsicPrefix.empty()) { OS << " num_intrinsics = " << (Ints.size() + 1) << "\n"; } else { OS << "}; // enum\n"; OS << "} // namespace Intrinsic\n"; OS << "} // namespace llvm\n\n"; OS << "#endif\n"; } } void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { OS << "// Target mapping\n"; OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n"; OS << "struct IntrinsicTargetInfo {\n" << " llvm::StringLiteral Name;\n" << " size_t Offset;\n" << " size_t Count;\n" << "};\n"; OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n"; for (auto Target : Ints.Targets) OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset << ", " << Target.Count << "},\n"; OS << "};\n"; OS << "#endif\n\n"; } void IntrinsicEmitter::EmitIntrinsicToNameTable( const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to name table\n"; OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) OS << " \"" << Ints[i].Name << "\",\n"; OS << "#endif\n\n"; } void IntrinsicEmitter::EmitIntrinsicToOverloadTable( const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to overload bitset\n"; OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; OS << "static const uint8_t OTable[] = {\n"; OS << " 0"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { // Add one to the index so we emit a null bit for the invalid #0 intrinsic. if ((i+1)%8 == 0) OS << ",\n 0"; if (Ints[i].isOverloaded) OS << " | (1<<" << (i+1)%8 << ')'; } OS << "\n};\n\n"; // OTable contains a true bit at the position if the intrinsic is overloaded. OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; OS << "#endif\n\n"; } // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp! enum IIT_Info { // Common values should be encoded with 0-15. IIT_Done = 0, IIT_I1 = 1, IIT_I8 = 2, IIT_I16 = 3, IIT_I32 = 4, IIT_I64 = 5, IIT_F16 = 6, IIT_F32 = 7, IIT_F64 = 8, IIT_V2 = 9, IIT_V4 = 10, IIT_V8 = 11, IIT_V16 = 12, IIT_V32 = 13, IIT_PTR = 14, IIT_ARG = 15, // Values from 16+ are only encodable with the inefficient encoding. IIT_V64 = 16, IIT_MMX = 17, IIT_TOKEN = 18, IIT_METADATA = 19, IIT_EMPTYSTRUCT = 20, IIT_STRUCT2 = 21, IIT_STRUCT3 = 22, IIT_STRUCT4 = 23, IIT_STRUCT5 = 24, IIT_EXTEND_ARG = 25, IIT_TRUNC_ARG = 26, IIT_ANYPTR = 27, IIT_V1 = 28, IIT_VARARG = 29, IIT_HALF_VEC_ARG = 30, IIT_SAME_VEC_WIDTH_ARG = 31, IIT_PTR_TO_ARG = 32, IIT_PTR_TO_ELT = 33, IIT_VEC_OF_ANYPTRS_TO_ELT = 34, IIT_I128 = 35, IIT_V512 = 36, IIT_V1024 = 37, IIT_STRUCT6 = 38, IIT_STRUCT7 = 39, IIT_STRUCT8 = 40, IIT_F128 = 41, IIT_VEC_ELEMENT = 42, IIT_SCALABLE_VEC = 43, IIT_SUBDIVIDE2_ARG = 44, IIT_SUBDIVIDE4_ARG = 45, IIT_VEC_OF_BITCASTS_TO_INT = 46, IIT_V128 = 47, IIT_BF16 = 48, IIT_STRUCT9 = 49, IIT_V256 = 50, IIT_AMX = 51 }; static void EncodeFixedValueType(MVT::SimpleValueType VT, std::vector &Sig) { if (MVT(VT).isInteger()) { unsigned BitWidth = MVT(VT).getFixedSizeInBits(); switch (BitWidth) { default: PrintFatalError("unhandled integer type width in intrinsic!"); case 1: return Sig.push_back(IIT_I1); case 8: return Sig.push_back(IIT_I8); case 16: return Sig.push_back(IIT_I16); case 32: return Sig.push_back(IIT_I32); case 64: return Sig.push_back(IIT_I64); case 128: return Sig.push_back(IIT_I128); } } switch (VT) { default: PrintFatalError("unhandled MVT in intrinsic!"); case MVT::f16: return Sig.push_back(IIT_F16); case MVT::bf16: return Sig.push_back(IIT_BF16); case MVT::f32: return Sig.push_back(IIT_F32); case MVT::f64: return Sig.push_back(IIT_F64); case MVT::f128: return Sig.push_back(IIT_F128); case MVT::token: return Sig.push_back(IIT_TOKEN); case MVT::Metadata: return Sig.push_back(IIT_METADATA); case MVT::x86mmx: return Sig.push_back(IIT_MMX); case MVT::x86amx: return Sig.push_back(IIT_AMX); // MVT::OtherVT is used to mean the empty struct type here. case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); // MVT::isVoid is used to represent varargs here. case MVT::isVoid: return Sig.push_back(IIT_VARARG); } } #if defined(_MSC_VER) && !defined(__clang__) #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function. #endif static void EncodeFixedType(Record *R, std::vector &ArgCodes, unsigned &NextArgCode, std::vector &Sig, ArrayRef Mapping) { if (R->isSubClassOf("LLVMMatchType")) { unsigned Number = Mapping[R->getValueAsInt("Number")]; assert(Number < ArgCodes.size() && "Invalid matching number!"); if (R->isSubClassOf("LLVMExtendedType")) Sig.push_back(IIT_EXTEND_ARG); else if (R->isSubClassOf("LLVMTruncatedType")) Sig.push_back(IIT_TRUNC_ARG); else if (R->isSubClassOf("LLVMHalfElementsVectorType")) Sig.push_back(IIT_HALF_VEC_ARG); else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) { Sig.push_back(IIT_SAME_VEC_WIDTH_ARG); Sig.push_back((Number << 3) | ArgCodes[Number]); MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy")); EncodeFixedValueType(VT, Sig); return; } else if (R->isSubClassOf("LLVMPointerTo")) Sig.push_back(IIT_PTR_TO_ARG); else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT); // Encode overloaded ArgNo Sig.push_back(NextArgCode++); // Encode LLVMMatchType ArgNo Sig.push_back(Number); return; } else if (R->isSubClassOf("LLVMPointerToElt")) Sig.push_back(IIT_PTR_TO_ELT); else if (R->isSubClassOf("LLVMVectorElementType")) Sig.push_back(IIT_VEC_ELEMENT); else if (R->isSubClassOf("LLVMSubdivide2VectorType")) Sig.push_back(IIT_SUBDIVIDE2_ARG); else if (R->isSubClassOf("LLVMSubdivide4VectorType")) Sig.push_back(IIT_SUBDIVIDE4_ARG); else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt")) Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT); else Sig.push_back(IIT_ARG); return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/); } MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); unsigned Tmp = 0; switch (VT) { default: break; case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH; case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH; case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH; case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH; case MVT::Any: { // If this is an "any" valuetype, then the type is the type of the next // type in the list specified to getIntrinsic(). Sig.push_back(IIT_ARG); // Figure out what arg # this is consuming, and remember what kind it was. assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp && "Invalid or no ArgCode associated with overloaded VT!"); unsigned ArgNo = NextArgCode++; // Encode what sort of argument it must be in the low 3 bits of the ArgNo. return Sig.push_back((ArgNo << 3) | Tmp); } case MVT::iPTR: { unsigned AddrSpace = 0; if (R->isSubClassOf("LLVMQualPointerType")) { AddrSpace = R->getValueAsInt("AddrSpace"); assert(AddrSpace < 256 && "Address space exceeds 255"); } if (AddrSpace) { Sig.push_back(IIT_ANYPTR); Sig.push_back(AddrSpace); } else { Sig.push_back(IIT_PTR); } return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig, Mapping); } } if (MVT(VT).isVector()) { MVT VVT = VT; if (VVT.isScalableVector()) Sig.push_back(IIT_SCALABLE_VEC); switch (VVT.getVectorNumElements()) { default: PrintFatalError("unhandled vector type width in intrinsic!"); case 1: Sig.push_back(IIT_V1); break; case 2: Sig.push_back(IIT_V2); break; case 4: Sig.push_back(IIT_V4); break; case 8: Sig.push_back(IIT_V8); break; case 16: Sig.push_back(IIT_V16); break; case 32: Sig.push_back(IIT_V32); break; case 64: Sig.push_back(IIT_V64); break; case 128: Sig.push_back(IIT_V128); break; case 256: Sig.push_back(IIT_V256); break; case 512: Sig.push_back(IIT_V512); break; case 1024: Sig.push_back(IIT_V1024); break; } return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig); } EncodeFixedValueType(VT, Sig); } static void UpdateArgCodes(Record *R, std::vector &ArgCodes, unsigned int &NumInserted, SmallVectorImpl &Mapping) { if (R->isSubClassOf("LLVMMatchType")) { if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) { ArgCodes.push_back(3 /*vAny*/); ++NumInserted; } return; } unsigned Tmp = 0; switch (getValueType(R->getValueAsDef("VT"))) { default: break; case MVT::iPTR: UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping); break; case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH; case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH; case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH; case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH; case MVT::Any: unsigned OriginalIdx = ArgCodes.size() - NumInserted; assert(OriginalIdx >= Mapping.size()); Mapping.resize(OriginalIdx+1); Mapping[OriginalIdx] = ArgCodes.size(); ArgCodes.push_back(Tmp); break; } } #if defined(_MSC_VER) && !defined(__clang__) #pragma optimize("",on) #endif /// ComputeFixedEncoding - If we can encode the type signature for this /// intrinsic into 32 bits, return it. If not, return ~0U. static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, std::vector &TypeSig) { std::vector ArgCodes; // Add codes for any overloaded result VTs. unsigned int NumInserted = 0; SmallVector ArgMapping; for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping); // Add codes for any overloaded operand VTs. for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping); unsigned NextArgCode = 0; if (Int.IS.RetVTs.empty()) TypeSig.push_back(IIT_Done); else if (Int.IS.RetVTs.size() == 1 && Int.IS.RetVTs[0] == MVT::isVoid) TypeSig.push_back(IIT_Done); else { switch (Int.IS.RetVTs.size()) { case 1: break; case 2: TypeSig.push_back(IIT_STRUCT2); break; case 3: TypeSig.push_back(IIT_STRUCT3); break; case 4: TypeSig.push_back(IIT_STRUCT4); break; case 5: TypeSig.push_back(IIT_STRUCT5); break; case 6: TypeSig.push_back(IIT_STRUCT6); break; case 7: TypeSig.push_back(IIT_STRUCT7); break; case 8: TypeSig.push_back(IIT_STRUCT8); break; case 9: TypeSig.push_back(IIT_STRUCT9); break; default: llvm_unreachable("Unhandled case in struct"); } for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig, ArgMapping); } for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig, ArgMapping); } static void printIITEntry(raw_ostream &OS, unsigned char X) { OS << (unsigned)X; } void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { // If we can compute a 32-bit fixed encoding for this intrinsic, do so and // capture it in this vector, otherwise store a ~0U. std::vector FixedEncodings; SequenceToOffsetTable > LongEncodingTable; std::vector TypeSig; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) { // Get the signature for the intrinsic. TypeSig.clear(); ComputeFixedEncoding(Ints[i], TypeSig); // Check to see if we can encode it into a 32-bit word. We can only encode // 8 nibbles into a 32-bit word. if (TypeSig.size() <= 8) { bool Failed = false; unsigned Result = 0; for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { // If we had an unencodable argument, bail out. if (TypeSig[i] > 15) { Failed = true; break; } Result = (Result << 4) | TypeSig[e-i-1]; } // If this could be encoded into a 31-bit word, return it. if (!Failed && (Result >> 31) == 0) { FixedEncodings.push_back(Result); continue; } } // Otherwise, we're going to unique the sequence into the // LongEncodingTable, and use its offset in the 32-bit table instead. LongEncodingTable.add(TypeSig); // This is a placehold that we'll replace after the table is laid out. FixedEncodings.push_back(~0U); } LongEncodingTable.layout(); OS << "// Global intrinsic function declaration type table.\n"; OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; OS << "static const unsigned IIT_Table[] = {\n "; for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { if ((i & 7) == 7) OS << "\n "; // If the entry fit in the table, just emit it. if (FixedEncodings[i] != ~0U) { OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", "; continue; } TypeSig.clear(); ComputeFixedEncoding(Ints[i], TypeSig); // Otherwise, emit the offset into the long encoding table. We emit it this // way so that it is easier to read the offset in the .def file. OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; } OS << "0\n};\n\n"; // Emit the shared table of register lists. OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; if (!LongEncodingTable.empty()) LongEncodingTable.emit(OS, printIITEntry); OS << " 255\n};\n\n"; OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL } namespace { struct AttributeComparator { bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { // Sort throwing intrinsics after non-throwing intrinsics. if (L->canThrow != R->canThrow) return R->canThrow; if (L->isNoDuplicate != R->isNoDuplicate) return R->isNoDuplicate; if (L->isNoReturn != R->isNoReturn) return R->isNoReturn; if (L->isNoSync != R->isNoSync) return R->isNoSync; if (L->isNoFree != R->isNoFree) return R->isNoFree; if (L->isWillReturn != R->isWillReturn) return R->isWillReturn; if (L->isCold != R->isCold) return R->isCold; if (L->isConvergent != R->isConvergent) return R->isConvergent; if (L->isSpeculatable != R->isSpeculatable) return R->isSpeculatable; if (L->hasSideEffects != R->hasSideEffects) return R->hasSideEffects; // Try to order by readonly/readnone attribute. CodeGenIntrinsic::ModRefBehavior LK = L->ModRef; CodeGenIntrinsic::ModRefBehavior RK = R->ModRef; if (LK != RK) return (LK > RK); // Order by argument attributes. // This is reliable because each side is already sorted internally. return (L->ArgumentAttributes < R->ArgumentAttributes); } }; } // End anonymous namespace /// EmitAttributes - This emits the Intrinsic::getAttributes method. void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { OS << "// Add parameter attributes that are not common to all intrinsics.\n"; OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; // Compute the maximum number of attribute arguments and the map typedef std::map UniqAttrMapTy; UniqAttrMapTy UniqAttributes; unsigned maxArgAttrs = 0; unsigned AttrNum = 0; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const CodeGenIntrinsic &intrinsic = Ints[i]; maxArgAttrs = std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); unsigned &N = UniqAttributes[&intrinsic]; if (N) continue; N = ++AttrNum; assert(N < 65536 && "Too many unique attributes for table!"); } // Emit an array of AttributeList. Most intrinsics will have at least one // entry, for the function itself (index ~1), which is usually nounwind. OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const CodeGenIntrinsic &intrinsic = Ints[i]; OS << " " << UniqAttributes[&intrinsic] << ", // " << intrinsic.Name << "\n"; } OS << " };\n\n"; OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n"; OS << " unsigned NumAttrs = 0;\n"; OS << " if (id != 0) {\n"; OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n"; OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), E = UniqAttributes.end(); I != E; ++I) { OS << " case " << I->second << ": {\n"; const CodeGenIntrinsic &intrinsic = *(I->first); // Keep track of the number of attributes we're writing out. unsigned numAttrs = 0; // The argument attributes are alreadys sorted by argument index. unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); if (ae) { while (ai != ae) { unsigned attrIdx = intrinsic.ArgumentAttributes[ai].Index; OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {"; ListSeparator LS(","); bool AllValuesAreZero = true; SmallVector Values; do { switch (intrinsic.ArgumentAttributes[ai].Kind) { case CodeGenIntrinsic::NoCapture: OS << LS << "Attribute::NoCapture"; break; case CodeGenIntrinsic::NoAlias: OS << LS << "Attribute::NoAlias"; break; case CodeGenIntrinsic::NoUndef: OS << LS << "Attribute::NoUndef"; break; case CodeGenIntrinsic::Returned: OS << LS << "Attribute::Returned"; break; case CodeGenIntrinsic::ReadOnly: OS << LS << "Attribute::ReadOnly"; break; case CodeGenIntrinsic::WriteOnly: OS << LS << "Attribute::WriteOnly"; break; case CodeGenIntrinsic::ReadNone: OS << LS << "Attribute::ReadNone"; break; case CodeGenIntrinsic::ImmArg: OS << LS << "Attribute::ImmArg"; break; case CodeGenIntrinsic::Alignment: OS << LS << "Attribute::Alignment"; break; } uint64_t V = intrinsic.ArgumentAttributes[ai].Value; Values.push_back(V); AllValuesAreZero &= (V == 0); ++ai; } while (ai != ae && intrinsic.ArgumentAttributes[ai].Index == attrIdx); OS << "};\n"; // Generate attribute value array if not all attribute values are zero. if (!AllValuesAreZero) { OS << " const uint64_t AttrValParam" << attrIdx << "[]= {"; ListSeparator LSV(","); for (const auto V : Values) OS << LSV << V; OS << "};\n"; } OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " << attrIdx << ", AttrParam" << attrIdx; if (!AllValuesAreZero) OS << ", AttrValParam" << attrIdx; OS << ");\n"; } } if (!intrinsic.canThrow || (intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && !intrinsic.hasSideEffects) || intrinsic.isNoReturn || intrinsic.isNoSync || intrinsic.isNoFree || intrinsic.isWillReturn || intrinsic.isCold || intrinsic.isNoDuplicate || intrinsic.isConvergent || intrinsic.isSpeculatable) { OS << " const Attribute::AttrKind Atts[] = {"; ListSeparator LS(","); if (!intrinsic.canThrow) OS << LS << "Attribute::NoUnwind"; if (intrinsic.isNoReturn) OS << LS << "Attribute::NoReturn"; if (intrinsic.isNoSync) OS << LS << "Attribute::NoSync"; if (intrinsic.isNoFree) OS << LS << "Attribute::NoFree"; if (intrinsic.isWillReturn) OS << LS << "Attribute::WillReturn"; if (intrinsic.isCold) OS << LS << "Attribute::Cold"; if (intrinsic.isNoDuplicate) OS << LS << "Attribute::NoDuplicate"; if (intrinsic.isConvergent) OS << LS << "Attribute::Convergent"; if (intrinsic.isSpeculatable) OS << LS << "Attribute::Speculatable"; switch (intrinsic.ModRef) { case CodeGenIntrinsic::NoMem: if (intrinsic.hasSideEffects) break; OS << LS; OS << "Attribute::ReadNone"; break; case CodeGenIntrinsic::ReadArgMem: OS << LS; OS << "Attribute::ReadOnly,"; OS << "Attribute::ArgMemOnly"; break; case CodeGenIntrinsic::ReadMem: OS << LS; OS << "Attribute::ReadOnly"; break; case CodeGenIntrinsic::ReadInaccessibleMem: OS << LS; OS << "Attribute::ReadOnly,"; OS << "Attribute::InaccessibleMemOnly"; break; case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem: OS << LS; OS << "Attribute::ReadOnly,"; OS << "Attribute::InaccessibleMemOrArgMemOnly"; break; case CodeGenIntrinsic::WriteArgMem: OS << LS; OS << "Attribute::WriteOnly,"; OS << "Attribute::ArgMemOnly"; break; case CodeGenIntrinsic::WriteMem: OS << LS; OS << "Attribute::WriteOnly"; break; case CodeGenIntrinsic::WriteInaccessibleMem: OS << LS; OS << "Attribute::WriteOnly,"; OS << "Attribute::InaccessibleMemOnly"; break; case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem: OS << LS; OS << "Attribute::WriteOnly,"; OS << "Attribute::InaccessibleMemOrArgMemOnly"; break; case CodeGenIntrinsic::ReadWriteArgMem: OS << LS; OS << "Attribute::ArgMemOnly"; break; case CodeGenIntrinsic::ReadWriteInaccessibleMem: OS << LS; OS << "Attribute::InaccessibleMemOnly"; break; case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem: OS << LS; OS << "Attribute::InaccessibleMemOrArgMemOnly"; break; case CodeGenIntrinsic::ReadWriteMem: break; } OS << "};\n"; OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, " << "AttributeList::FunctionIndex, Atts);\n"; } if (numAttrs) { OS << " NumAttrs = " << numAttrs << ";\n"; OS << " break;\n"; OS << " }\n"; } else { OS << " return AttributeList();\n"; OS << " }\n"; } } OS << " }\n"; OS << " }\n"; OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n"; OS << "}\n"; OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; } void IntrinsicEmitter::EmitIntrinsicToBuiltinMap( const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) { StringRef CompilerName = (IsGCC ? "GCC" : "MS"); typedef std::map> BIMTy; BIMTy BuiltinMap; StringToOffsetTable Table; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const std::string &BuiltinName = IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName; if (!BuiltinName.empty()) { // Get the map for this target prefix. std::map &BIM = BuiltinMap[Ints[i].TargetPrefix]; if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second) PrintFatalError(Ints[i].TheDef->getLoc(), "Intrinsic '" + Ints[i].TheDef->getName() + "': duplicate " + CompilerName + " builtin name!"); Table.GetOrAddStringOffset(BuiltinName); } } OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n"; OS << "// This is used by the C front-end. The builtin name is passed\n"; OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n"; OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName << "Builtin(const char " << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; if (Table.Empty()) { OS << " return Intrinsic::not_intrinsic;\n"; OS << "}\n"; OS << "#endif\n\n"; return; } OS << " static const char BuiltinNames[] = {\n"; Table.EmitCharArray(OS); OS << " };\n\n"; OS << " struct BuiltinEntry {\n"; OS << " Intrinsic::ID IntrinID;\n"; OS << " unsigned StrTabOffset;\n"; OS << " const char *getName() const {\n"; OS << " return &BuiltinNames[StrTabOffset];\n"; OS << " }\n"; OS << " bool operator<(StringRef RHS) const {\n"; OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n"; OS << " }\n"; OS << " };\n"; OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; // Note: this could emit significantly better code if we cared. for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ OS << " "; if (!I->first.empty()) OS << "if (TargetPrefix == \"" << I->first << "\") "; else OS << "/* Target Independent Builtins */ "; OS << "{\n"; // Emit the comparisons for this target prefix. OS << " static const BuiltinEntry " << I->first << "Names[] = {\n"; for (const auto &P : I->second) { OS << " {Intrinsic::" << P.second << ", " << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n"; } OS << " };\n"; OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n"; OS << " std::end(" << I->first << "Names),\n"; OS << " BuiltinNameStr);\n"; OS << " if (I != std::end(" << I->first << "Names) &&\n"; OS << " I->getName() == BuiltinNameStr)\n"; OS << " return I->IntrinID;\n"; OS << " }\n"; } OS << " return "; OS << "Intrinsic::not_intrinsic;\n"; OS << "}\n"; OS << "#endif\n\n"; } void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) { IntrinsicEmitter(RK).run(OS, /*Enums=*/true); } void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) { IntrinsicEmitter(RK).run(OS, /*Enums=*/false); }